Abstract:
A broadcasting system for an autonomous vehicle is disclosed and includes an antenna, a plurality of sensors, one or more processors, and a memory coupled to the processors. The antenna is configured to send and receive wireless communication, and the antenna receives publically available wireless signals. The sensors are configured to generate signals indicating a real-time velocity and a real-time direction of travel of the autonomous vehicle. The processors are in communication with the antenna and the plurality of sensors. The memory stores data comprising program code that, when executed by the one or more processors, causes the system to receive as input the publically available wireless signals and the signals indicating the real-time velocity and the real-time direction of travel of the autonomous vehicle. The system is further caused to determine a real-time velocity and real-time direction of travel of autonomous vehicle.
Abstract:
A power system for an unmanned surface vehicle is disclosed. In one embodiment, the power system includes a fuel cell, a fuel storage, and an air management system. The fuel cell includes a fuel cell stack. The fuel cell stack includes a fuel inlet, an air inlet, and an exhaust outlet. The fuel storage includes at least one fuel-storage module fluidly connected to the fuel inlet of the fuel cell stack. The fuel-storage module is a source of energy for the fuel cell. The air management system is fluidly connected to the air inlet and the exhaust outlet of the fuel cell. An air snorkel is part of the air management system and provides air to operate the fuel cell while the unmanned surface vehicle is deployed on a surface of a body of water. The air snorkel includes an intake and an exhaust.
Abstract:
A method, system, and apparatus are disclosed for a ruggedized photonic crystal (PC) sensor packaging. In particular, the present disclosure teaches a ruggedized packaging for a photonic crystal sensor that includes of a hermetic-seal high-temperature jacket and a ferrule that eliminate the exposure of the optical fiber as well as the critical part of the photonic crystal sensor to harsh environments. The disclosed packaging methods enable photonic crystal based sensors to operate in challenging environments where adverse environmental conditions, such as electromagnetic interference (EMI), corrosive fluids, large temperature variations, and strong mechanical vibrations, currently exclude the use of traditional sensor technologies.
Abstract:
An optical sensor and method of manufacture are provided herein. The optical sensor includes an optical fiber comprising a terminating end surface, and a photonic crystal coupled to the terminating end surface of the optical fiber.
Abstract:
Methods and an optical interrogation system for monitoring structural health of a structure are provided. The method includes generating an optical signal using an optical signal generator, and directing the optical signal towards at least one optical sensor located remotely from the optical signal generator. The optical sensor includes a photonic crystal wafer optically interacting with the optical signal and an environmental condition. The method also includes capturing, by an optical signal receiving apparatus, a reflected optical signal reflected from the at least one optical sensor, and analyzing the reflected optical signal to determine a change in the environmental condition.
Abstract:
A system includes a battery and a power management unit connected with the battery. The power management unit controls power to the battery. A spare power unit can connect with the power management unit and the battery. The power management unit stores excess charge to the spare power unit and to divert stored charge to the battery when the battery is charged less than a determined percentage.
Abstract:
A power system for an unmanned surface vehicle includes a fuel cell including a fuel cell stack, where the fuel cell stack includes a fuel inlet. The power system also includes a fuel storage including at least one fuel-storage module fluidly connected to the fuel inlet of the fuel cell stack. The fuel-storage module is a source of energy for the fuel cell. The power system also includes a fuel and thermal management system fluidly connected to the fuel inlet of the fuel cell stack. The fuel and thermal management system includes a heat exchanger in thermal communication with the fuel cell stack for removing waste heat produced by the fuel cell stack during operation. The fuel and thermal management system also includes a flow valve, a pressure regulator, and a conduit.
Abstract:
A power system for an unmanned surface vehicle includes a fuel cell including a fuel cell stack, where the fuel cell stack includes a fuel inlet. The power system also includes a fuel storage including at least one fuel-storage module fluidly connected to the fuel inlet of the fuel cell stack. The fuel-storage module is a source of energy for the fuel cell. The power system also includes a fuel and thermal management system fluidly connected to the fuel inlet of the fuel cell stack. The fuel and thermal management system includes a heat exchanger in thermal communication with the fuel cell stack for removing waste heat produced by the fuel cell stack during operation. The fuel and thermal management system also includes a flow valve, a pressure regulator, and a conduit.
Abstract:
A system includes a battery and a power management unit connected with the battery. The power management unit controls power to the battery. A spare power unit can connect with the power management unit and the battery. The power management unit stores excess charge to the spare power unit and to divert stored charge to the battery when the battery is charged less than a determined percentage.
Abstract:
An example fuel quantity indicating system includes a fuel tank, optical sensors mounted inside the fuel tank that each include a sensor chip and a diaphragm that deflects when ambient pressure differs from a reference pressure of the sensor chip, an optical fiber bundle that has an optical fiber connected to each of the optical sensors for guiding light to each of the optical sensors, and a processor connected to the optical fiber bundle for receiving outputs of the optical sensors indicative of respective pressures, and for determining a fuel level measurement of the fuel tank based on the outputs of the optical sensors.