Abstract:
An information processing method that is executed by an information processing device configured to calculate a feature relating to driving by a driver and transmit configured to information on the feature to outside includes specifying whether a current situation is a predetermined situation, calculating information on the predetermined situation as the feature when the information processing device specifies the predetermined situation, statistically quantifying the feature, and transmitting the statistically quantified feature to outside.
Abstract:
An information processing device configured to calculate a feature related to driving of a vehicle includes a first processor configured to receive input information including information on a speed of the vehicle and a second processor configured to calculate the feature by using the input information received during a first period in which predetermined conditions are satisfied. The first period being included in a second period in which the input information is received. The predetermined conditions include a condition that a driving operation is performed before a brief stop of the vehicle.
Abstract:
An information processing device calculates a feature related to driving of a driver. The information processing device includes: a processor that calculates the feature; and a transmission unit that transmits the calculated feature to an outside. The processor identifies whether there is a predetermined situation in which a risk in relation to a preceding vehicle occurs, and calculates, as the feature, information related to a behavior of the driver for reducing the risk when the predetermined situation is identified.
Abstract:
An information processing apparatus includes a receiver configured to receive a data set including a requested acceleration as information representing movement of a vehicle in a front-rear direction and any one of a steering angle, a yaw rate, and a rotation radius as information representing movement of the vehicle in a lateral direction from each of a plurality of applications, an arbitration unit configured to perform arbitration of information representing the movement of the vehicle in the front-rear direction and arbitration of information representing the movement of the vehicle in the lateral direction based on a plurality of the data sets received by the receiver, and a first output unit configured to output instruction information for driving an actuator based on an arbitration result of the arbitration unit.
Abstract:
A motion manager configured to request motion of a vehicle according to a kinematic plan on driver assistance of the vehicle to at least one of a plurality of actuators provided in the vehicle includes one or more processors. The one or more processors are configured to receive information indicating a plurality of kinematic plans and classify the information into predetermined items such that a realization method of achieving a purpose of each of the kinematic plans is selectable without specifying or distinguishing a setting source of each of the kinematic plans, arbitrate the kinematic plans, calculate a motion request to the vehicle based on a result of arbitrating the kinematic plans, and distribute the motion request to at least one of the actuators.
Abstract:
A control device mounted on a vehicle, the control device includes one or more processors configured to: receive a plurality of first requests from a driver assistance system; arbitrate the first requests; calculate a second request based on an arbitration result, wherein the first requests and the second request are different physical quantities from each other; distribute the second request to at least one of a plurality of actuator systems; and output, to the driver assistance system, information regarding a middle point of a steering actuator included in the actuator systems in the driver assistance system.
Abstract:
A control device mounted on a vehicle including one or more processors. The one or more processors are configured to receive a plurality of first requests from a driver assistance system. The one or more processors are configured to arbitrate the first requests. The one or more processors are configured to calculate a second request that has a physical quantity different from that of the first request, based on an arbitration result. The one or more processors are configured to distribute the second request to at least one of a plurality of actuator systems. The one or more processors are configured to output an actual steering angle of the vehicle to the driver assistance system.
Abstract:
A control device includes one or more processors that is configured to: receive a plurality of first requests from a driver assistance system; arbitrate the plurality of first requests; calculate a second request, which has a physical quantity different from the first request, based on an arbitration result; and distribute the second request to at least one of a plurality of actuator systems. When a difference between the second request based on a previous arbitration result and the second request based on a current arbitration result is larger than a threshold value, the one or more processors are configured to distribute a request that is a value between the second request based on the previous arbitration result and the second request based on the current arbitration result.
Abstract:
A collision avoidance assistance device configured to perform driver steering assistance to avoid a collision between a vehicle and an obstacle, the device includes a steering control unit configured to perform the steering assistance in a case where it is determined that there is a possibility of the collision between the vehicle and the obstacle. During a period from commencement of the steering assistance to elapsing of a first time determined by response characteristics of a lateral acceleration of the vehicle, the steering control unit is configured to rotate a steering wheel of the vehicle in a collision avoidance direction by a control amount determined based on a steering holding force of the driver.
Abstract:
A shock absorber system installed on a vehicle having four wheels in which a VSC control for giving a braking force to any of the wheels is to be executed to reduce an improper turning behavior of the vehicle due to an excessive side slip of any of the wheels, including: four hydraulic shock absorbers each configured to generate a damping force with respect to a relative movement of a corresponding sprung and unsprung portion and having a damping-force changer configured to change the damping force; and a controller configured to control the damping force by controlling the damping-force changer and configured such that, when the improper turning behavior of the vehicle occurs, the controller executes a reduction control in which the damping force to be generated by at least one of the four shock absorbers is controlled to reduce the improper turning behavior.