Abstract:
A connector has a housing with an aperture formed therein having one portion larger than the other portion. The housing is mounted on the device under test with the housing positioned over a plurality of electrical contacts. An electrical load is positioned within the larger aperture of the housing and has a plurality of resistors disposed adjacent to an electrical contact assembly. A resilient member is positioned between the electrical load and the device under test such that a force directed on the electrical load compresses the resilient member to allow contact between a plurality of electrical contacts of the electrical contact assembly and the plurality of the electrical contacts on the device under test. Removing the force decompresses the resilient member and disconnects the plurality of contacts of the electrical contact assembly from the plurality of electrical contacts of the device under test.
Abstract:
A probe or accessory for use with an electrical test and measurement instrument can include an input to receive an input signal from a device under test (DUT), a clamp control unit or oscilloscope to apply a clamping/limiting level to the input signal to generate an output signal, and/or a control unit output port to provide the clamped/limited output signal to an oscilloscope.
Abstract:
A mechanism is included for receiving a phase modulated optical signal. The phase modulated signal is modulated by a remote electrical test signal at a sensor head. A reference optical signal is also received. A phase difference between the phase modulated optical signal and the reference optical signal is then determined. The phase difference is employed to recover the remote electrical test signal from the sensor head. The phase difference may be determined by employing a phase modulator in a controller that tracks a phase modulator in the sensor head. The phase difference may also be determined by comparison of the signals in the complex signal domain.
Abstract:
A sensor head of a test and measurement instrument can include an input configured to receive an input signal from a device under test (DUT), an optical voltage sensor having signal input electrodes and control electrodes or one set of electrodes, wherein the input is connected to the signal input electrodes, and a bias control unit connected to the control electrodes and configured to reduce an error signal or the input signal bias control signal are electrically combined and applied to a single set of electrodes.
Abstract:
An electro-optical sensor comprises an optical input configured to receive an optical carrier via an upstream fiber. The electro-optical sensor also includes an optical modulator configured to modulate an electrical signal onto the optical carrier to create an optical signal. The electro-optical sensor further includes an optical output configured to transmit the optical signal via a downstream fiber. The electro-optical sensor employs a variation output configured to transmit variation data indicating variation in the received optical carrier to support compensation for corresponding variation in the optical signal.
Abstract:
An electro-optical sensor comprises an optical input configured to receive an optical carrier via an upstream fiber. The electro-optical sensor also includes an optical modulator configured to modulate an electrical signal onto the optical carrier to create an optical signal. The electro-optical sensor further includes an optical output configured to transmit the optical signal via a downstream fiber. The electro-optical sensor employs a variation output configured to transmit variation data indicating variation in the received optical carrier to support compensation for corresponding variation in the optical signal.
Abstract:
A probe or accessory for use with an electrical test and measurement instrument can include an input to receive an input signal from a device under test (DUT), a clamp control unit or oscilloscope to apply a clamping/limiting level to the input signal to generate an output signal, and/or a control unit output port to provide the clamped/limited output signal to an oscilloscope.
Abstract:
The disclosed technology relates to a probe for use with a test and measurement instrument. The probe includes a digital multimeter or voltmeter with an analog-to-digital converter configured to measure a signal from a device under test and determine a digital measurement from the signal, a controller connected to the multimeter or voltmeter configured to receive the digital measurement from the multimeter or voltmeter, a digital communication interface connected to the controller configured to communicate with the controller, and a communication link connected to the digital communication interface and the analog signal interface to communicate with the test and measurement instrument.
Abstract:
A test and measurement system including an electro-optical accessory with an electro-optical sensor configured to output a modulated output signal, a device under test connected to the electro-optical accessory with a variable input signal, and a processor. The electro-optical accessory includes two sets of electrodes in which a sensitivity of the first set of electrodes is different from a sensitivity of the second set of electrodes. The processor in the test and measurement system is configured to modify the modulated output signal from the electro-optical voltage accessory to reconstruct the variable input signal of the electro-optical voltage accessory that exceeds the linear input range of the optical sensor.
Abstract:
An accessory for use with a test and measurement instrument. The accessory includes an input to receive a signal from a device under test, a calibration unit configured to apply a calibration or compensation signal internal to the accessory, and an output to output the signal from the device under test or the calibration or compensation signal to a test and measurement instrument.