摘要:
A method for developing an optimized layout fragmentation script for an optical proximity correction (OPC) simulation tool. A test pattern layout having at least one structure representing a portion of the integrated circuit layout is provided. Optical proximity correction is iteratively conducted on the test pattern layout for each desired permutation of at least one fragmentation parameter associated with the test pattern layout and, for each permutation, a corrected test pattern layout is generated. A printed simulation of each corrected test pattern layout is made and analyzed to select one of the permutations of the at least one fragmentation parameter to apply to a integrated circuit layout prior to correction with the OPC simulation tool.
摘要:
A method (400) of determining a custom illumination scheme for a projection-type photolithography system (500) is disclosed. The custom illumination scheme provides compensation for imaging system aberrations within the photolithography system (500) and thereby reduces critical dimension non-uniformities of features produced by the photolithography system (500) across a substrate (120). The method (400) includes the steps of performing a lithography simulation (404) for one or more nominal features using imaging system aberration data which characterizes the photolithography system (500) and an initial illumination scheme. The lithography simulation includes one or more simulated features which differ from the one or more nominal features due to the imaging system aberration data. The method (400) further includes determining whether the difference between the one or more nominal features and the one or more simulated features is less than an acceptable threshold (408) and varying the illumination scheme (412) to thereby form a modified illumination scheme if the difference is not less than the acceptable threshold. Another lithography simulation is then performed (404) for the one or more nominal features using the imaging system aberration data and the modified illumination scheme, and the above steps are repeated until the difference is less than the acceptable threshold (410).
摘要:
A process and apparatus are provided for automated pattern-based semiconductor design layout correction. Embodiments include scanning a drawn semiconductor design layout to determine a difficult-to-manufacture pattern within the drawn semiconductor design layout based on a match with a pre-characterized difficult-to-manufacture pattern, determining a corrected pattern based on a pre-determined correlation between the corrected pattern and the pre-characterized difficult-to-manufacture pattern, and replacing the difficult-to-manufacture pattern with the corrected pattern within the drawn semiconductor design layout.
摘要:
Methods and apparatus are provided for analyzing impact of design rules on a layout. One exemplary method involves generating variants of the layout for different values for the rule, determining values of a device metric for each of the layout variants, and identifying the relationship between rule and the device metric based on the values for the device metric corresponding to the different values for the rule. In one embodiment, the layout variants are generated by using the different values for the rule to perform layout compaction on an initial layout generated in accordance with an initial value for the rule.
摘要:
An optimal assist feature rules set for an integrated circuit design layout is created using inverse lithography. The full chip layout is lithographically simulated, and printability failure areas are determined. The features are analyzed for feature layout patterns, and inverse lithography is performed on the unique feature layouts to form assist features. The resulting layout of assist features is analyzed to create an assist feature rules set. The rules can then be applied to a photomask patterned with the integrated circuit design layout to print optimal assist features. The resulting photomask may be used to form an integrated circuit on a semiconductor substrate.
摘要:
A method of selecting a plurality of lithography process parameters for patterning a layout on a wafer includes simulating how the layout will print on the wafer for a plurality of resolution enhancement techniques (RETs), where each RET corresponds to a plurality of lithography process parameters. For each RET, the edges of structures within the simulated layout can be classified based on manufacturability. RETs that provide optimal manufacturability can be selected. In this manner, the simulation tool can be used to determine the optimal combination of scanner setup and reticle type for minimizing the variation in wafer critical dimension (CD).
摘要:
A method (100) of providing critical dimension uniformity in a radiation sensitive film (104) includes the steps of forming (102) the radiation sensitive film (104) over a substrate (106) and exposing (110) the radiation sensitive film (104) to radiation (56) using a mask (50) having a pattern thereon, wherein a first feature (52) and a second feature (54) on the mask (50) are intended to provide the same critical dimension on the radiation sensitive film (104). The exposure step (110) creates a non-uniform exposure pattern (60) on the radiation sensitive film (104) corresponding to the mask pattern due to various anomalies in the exposure process or in the mask itself. A transferred first feature (84) critical dimension on the radiation sensitive film (104) which corresponds to the first mask feature (52) is larger than the second transferred feature (86) critical dimension which corresponds to the second mask feature (54) due to the radiation non-uniformities or imaging non-uniformities. The method (100) further includes exposing (140) the radiation sensitive film (104) to a blanket radiation exposure (150), wherein the blanket radiation exposure (150) provides effectively a greater dose to the first transferred feature (84) than the radiation dose to the second transferred feature (86) due to variations in a bleaching of the radiation sensitive film (104) at edges (130, 132) of the first and second transferred features (84, 86) due to the first exposure (110). Therefore the blanket exposure step (140) decreases the critical dimension of the first transferred feature (84) more than the critical dimension size of the second transferred feature (86), thereby reducing a difference in the critical dimension of the first and second transferred features (84, 86) which results in improved critical dimension uniformity.
摘要:
Methods and apparatus are provided for analyzing impact of design rules on a layout. One exemplary method involves generating variants of the layout for different values for the rule, determining values of a device metric for each of the layout variants, and identifying the relationship between rule and the device metric based on the values for the device metric corresponding to the different values for the rule. In one embodiment, the layout variants are generated by using the different values for the rule to perform layout compaction on an initial layout generated in accordance with an initial value for the rule.
摘要:
Methods for fabricating semiconductor devices are provided. In an embodiment, a method of fabricating a semiconductor device includes scanning a circuit design layout and proposing patterns for decomposed layouts. The proposed patterns are then compared with a library of prior patterns including a category of forbidden patterns and a category of preferred patterns. If a selected proposed pattern matches a forbidden pattern, the selected proposed pattern is eliminated. If the selected proposed pattern matches a preferred pattern, then the selected proposed pattern is identified for use in the decomposed layouts. Decomposed layouts are generated from the identified patterns. A plurality of masks is fabricated based on the decomposed layouts. Then a multiple patterning lithographic technique is performed with the plurality of masks on a semiconductor substrate.
摘要:
A method for fabricating an integrated circuit is disclosed that includes, in accordance with an embodiment, providing a double patterning technology-compliant logical design for the integrated circuit, the logical design including a plurality of elements; scoring the design of one or more of the plurality of elements to produce a design score; modifying the design based at least in part on the design score; generating a mask set implementing the modified logical design; and employing the mask set to implement the logical design in and on a semiconductor substrate.