Abstract:
Emulsion vaccine formulations containing an antigen and an adjuvant in the aqueous phase are used for the vaccination of animals wherein the adjuvant is an acrylic polymer and/or dimethyl dioctadecyl ammonium bromide (DDA). These formulations can be prepared by mixing an aqueous phase containing the antigen and adjuvant with an oil phase in the presence of an emulsifier.
Abstract:
The present invention provides live, attenuated Mycoplasma gallisepticum bacteria that exhibit reduced expression of a protein identified as MGA_0621. In certain embodiments, the attenuated bacteria may additionally exhibit reduced expression of one or more proteins selected from the group consisting of pyruvate dehydrogenase, phosphopyruvate hydratase, 2-deoxyribose-5-phosphate aldolase, and ribosomal protein L35, relative to a wild-type M. gallisepticum bacterium. Also provided are vaccines and vaccination methods involving the use of the live, attenuated M. gallisepticum bacteria, and methods for making live attenuated M. gallisepticum bacteria. An exemplary live, attenuated strain of M. gallisepticum is provided, designated MGx+47, which was shown by proteomics analysis to exhibit significantly reduced expression of MGA_0621, and was shown to be safe and effective when administered as a vaccine against M. gallisepticum infection in chickens.
Abstract:
The present invention provides live, attenuated Mycoplasma gallisepticum bacteria that exhibit reduced expression of a protein identified as MGA_0621. In certain embodiments, the attenuated bacteria may additionally exhibit reduced expression of one or more proteins selected from the group consisting of pyruvate dehydrogenase, phosphopyruvate hydratase, 2-deoxyribose-5-phosphate aldolase, and ribosomal protein L35, relative to a wild-type M. gallisepticum bacterium. Also provided are vaccines and vaccination methods involving the use of the live, attenuated M. gallisepticum bacteria, and methods for making live attenuated M. gallisepticum bacteria. An exemplary live, attenuated strain of M. gallisepticum is provided, designated MGx+47, which was shown by proteomics analysis to exhibit significantly reduced expression of MGA_0621, and was shown to be safe and effective when administered as a vaccine against M. gallisepticum infection in chickens.
Abstract:
A system for vaccinating swine according to one embodiment includes a housing having an open first end and an open opposite second end. The housing has a pair of side walls that are angled and non-parallel to one another such that at the second end only a single piglet can exit at one time. The system also includes a vaccination station for individually vaccinating piglets. The vaccination station is located between the pair of side walls in a region thereof that is sized to only permit one piglet to stand between the side walls. The vaccination station includes at least one sensor that detects the presence of the one piglet within the vaccination station and at least one spray nozzle positioned within the vaccination station such that a vaccine dose discharged therefrom is directed upwardly into facial areas of the piglet effectively.
Abstract:
In a communications network, a virtual rack having service modules for performing network services is provided. A pinhole that corresponds to a plurality of the service modules is created. Data packets are directed to a service processor in response to matching the data packets to the pinhole. For connection class offload, using the acceleration processor to match the connection class pinhole to the data packets and creating connection class sessions that are used for processing subsequent packets of the connection.
Abstract:
A method and apparatus for managing communication of router information in a network is disclosed. Consumers of the router information are determined on an interface in the network. The interface is set as a passive interface if no consumers are present on the interface. A passive interface is an interface on which the communication of router information is disallowed.
Abstract:
A genetic deletion mutant live E. coli vaccine suitable for mass application to poultry, including chickens, is provided. Also provided is a safe and effective method to protect poultry against the ravages of Escherichia coli bacillosis infection and disease in which a live mutant aroA-gene deleted E. coli immunogen is administered to chickens, turkeys and the like via mass application routes such as coarse sprays and drinking water.
Abstract:
The present invention provides vaccine compositions comprising at least two strains of avian influenza virus, wherein one of the strains has an H5 hemagglutinin subtype and the other strain has an H7 hemagglutinin subtype, and wherein at least one of the strains has an N4 neuraminidase subtype and neither strain has an N1 subtype. Also provided are vaccination methods that utilize the novel vaccine compositions of the invention. The compositions and methods of the present invention provide protection against infection with H5 and H7 influenza strains (e.g., H5N1 and H7N1) while at the same time facilitating the distinction between infected and vaccinated animals.
Abstract:
There is provided a vaccine composition comprising a combination of a genetic deletion mutant S. typhimurium microorganism and a genetic deletion mutant E. coli microorganism, suitable for mass application to poultry. Also provided is a safe and effective method to protect poultry against the ravages of E. coli and Salmonella infection and disease.
Abstract:
A method and apparatus for managing communication of router information in a network is disclosed. Consumers of the router information are determined on an interface in the network. The interface is set as a passive interface if no consumers are present on the interface. A passive interface is an interface on which the communication of router information is disallowed.