Abstract:
The invention relates to antibody molecules having specificity for antigenic determinants of human OX40, therapeutic uses of the antibody molecules and methods for producing said antibody molecules.
Abstract:
The present invention provides dual specificity antibody fusion proteins comprising an antibody Fab or Fab′ fragment with specificity for an antigen of interest, said fragment being fused to at least one single domain antibody which has specificity for a second antigen of interest.
Abstract:
The present disclosure relates to a recombinant gram-negative bacterial cell comprising: a.) a mutant spr gene encoding a spr protein having a mutation at one or more amino acids selected from D133, H145, H157, N31, R62, I70, Q73, C94, S95, V98, Q99, R100, L108, Y115, V135, L136, G140, R144 and G147 and b.) a gene capable of expressing or overexpressing one or more proteins capable of facilitating protein folding, such as FkpA, Skp, SurA, PPiA and PPiD, wherein the cell has reduced Tsp protein activity compared to a wild-type cell, methods employing the cells, use of the cells in the expression of proteins in particular antibodies, such as anti Fc Rn antibodies and proteins made by the methods described herein.
Abstract:
The present invention provides a multivalent antibody or a heavy/light chain component thereof comprising: a heavy chain comprising a constant region fragment, said constant region fragment located between two variable domains which are not a cognate pair, the heavy chain further comprising an Fc region with at least one domain selected from CH2, CH3 and combinations thereof, with the proviso that the heavy chain contains no more than one CH1 domain and only contains two variable domains, and a light chain comprising a constant region fragment located between two variable domains which are not a cognate pair, wherein said heavy and light chains are aligned to provide a first binding site formed by a first cognate pair of variable domains and a second binding site formed by a second cognate pair of variable domains.
Abstract:
The present invention provides a recombinant gram-negative bacterial cell, characterized in that the cell comprises a recombinant polynucleotide encoding DsbC and has reduced Tsp protein activity compared to a wild-type cell.
Abstract:
The present invention provides a recombinant gram-negative bacterial cell comprising a mutant spr gene encoding a mutant spr protein and wherein the cell comprises a non-recombinant wild-type chromosomal Tsp gene.
Abstract:
The present invention provides dual specificity antibody fusion proteins comprising an antibody Fab or Fab′ fragment with specificity for an antigen of interest, said fragment being fused to at least one single domain antibody which has specificity for a second antigen of interest.
Abstract:
The present disclosure provides an antibody or antibody fragment comprising at least one Fab molecule, wherein the light chain variable region, VL and the heavy chain region, VH of the Fab molecule are linked by one or more disulfide bonds, and use of the same in treatment or prophylaxis.