Abstract:
The invention relates to a method for repairing components comprising a base material with an oriented microstructure, wherein the repair point comprises a correspondingly oriented microstructure as the surrounding base material. According to the inventive method, solder is applied in the region of a point which is to be repaired and is soldered to the component by means of a heating effect produced by a device. A temperature gradient, i.e., approximately a temperature characteristic, is produced during the heating effect, said temperature characteristic ranging from a high to a low temperature in the region of the point which is to be repaired.
Abstract:
A nickel-based DS alloy for directional solidification, includes Cobalt (Co), Chromium (Cr), Molybdenum (Mo), Tungsten (W), Tantalum (Ta), Titanium (Ti), Aluminum (Al), Rhenium (Re), Hafnium (Hf), Boron (B), Carbon (C), and Zirconium (Zr). Further, a component, for example a turbine blade or vane, with such an alloy is provided.
Abstract:
A core die is provided. The core die includes a first half and a second half where a cavity is formed between the two. Pins are arranged on the halves and the pins are replaceable. By virtue of the modular inner structure of a core die, the core die may be matched to the desired changes of the core, by small changes, more quickly and more easily than would be the case if the core die had only one part or if the pins were a fixed component of the core die halves.
Abstract:
A casting apparatus for producing a turbine rotor blade of a gas turbine, and to a turbine rotor blade produced therewith is provided. The casting apparatus includes a hollow ceramic shell mold, of which the pouring gate and cores arranged therein are oriented with respect to each other such that a hot casting material flowing into a cavity of the ceramic shell mold does not come in direct contact with the cores. Thus, so-called hot spots on cores are avoided, which until now have had negative effects on the solidification of the casting material. Especially in the region of the blade root of the turbine rotor blade to be produced improved solidification of the casting material may thus be obtained, reducing any disturbance in the structure of the solidified casting material.
Abstract:
The invention relates to a method for the production of a pattern for precision casting representation of turbine component comprising at least one cavity, whereby the prepared pattern comprises at least one core and an outer contour pattern, at least partly enclosing the core and at least partly defining the outer contour of the turbine component. The core is made from a hardening core material, which hardens during the course of the method and the outer contour pattern is made from a combustible or fusible material. The outer contour model is first produced with at least one cavity corresponding to the at least one cavity of the turbine component and subsequently, in order to form the at least one care, the hardening core material is introduced into the at least one cavity and hardened.
Abstract:
The invention relates to a heat treatment method for monocrystalline or directionally solidified structural components. Said method comprises a heat treatment which results in dissolving at least one crystalline phase of the material of the structural component, referred to in the following as component material. The inventive method is characterized by carrying out the heat treatment by heating the structural component to a dissolution temperature required for dissolving the crystalline phase only in at least one first component area in which the stresses within the component material do not exceed a predetermined value. In at least one second component area in which the stresses within the component material exceed the predetermined value the material is only heated to a temperature below the dissolution temperature.
Abstract:
According to the prior art, through-holes in components are often introduced after the production (casting) of the component. This entails additional outlay in terms of time and equipment. The time required can be considerably shortened if a casting mold is designed in such a way that the through-hole is at least in part formed by corresponding projections being formed on the inner wall and/or the outer wall of the casting mold.
Abstract:
According to the prior art, passage holes in components are often introduced after the operation (casting) for producing the component. This signifies an additional outlay in terms of time and of apparatus. The outlay in terms of time can be reduced considerably if a casting mold is formed in such a way as at least partially to produce the passage hole, in that projections corresponding to the passage holes are formed on the inner wall and/or the outer wall of the casting mold.