Abstract:
A wind turbine blade comprising at least two wind turbine blade sections connected in a blade connection joint, where each blade section at their connection end comprises a number of corresponding dentations arranged to interconnect across the blade connection joint. One of the blade sections comprises a spar cap structure and a connecting part with a first end joined to the spar cap structure and an opposite second end positioned at the blade section connection end and comprising a number of the dentations. The connecting part further comprises a number of sheets which are interleaved with the fibre-reinforced layers of the spar cap structure in an overlapping zone thereby joining the spar cap structure and the connecting part. The invention further relates to a method for preparing a wind turbine blade section as mentioned above. The invention also relates to a method of preparing a sheet for a connecting part with a number of dentations at one end, which method involves cutting and rolling a number of unidirectional prepreg sheets to form fingers, placing in an open mould the fingers next to each other and partially apart such as to form the dentations, closing the mould, and fully or partially curing the sheet.
Abstract:
The invention relates to a method for curing of a composite material. The method involves applying heat to only a first region of said composite material, such that said first region is heated to a temperature above the cure onset temperature of said curable resin, thus initiating curing of said curable resin in said first region; and maintaining the composite material in an insulated state, such that the curing of said curable resin spreads to regions of the composite material outside of said first region.
Abstract:
A method of making a wind turbine blade in a blade mould is described. The wind turbine blade comprises a plurality of elongate reinforcing structures each comprising a stack of strips of fibre-reinforced polymeric material, and the method comprises: stacking strips of fibre-reinforced polymeric material to form a plurality of stacks (40), each defining a longitudinal axis; aligning the stacks relative to one another in an alignment zone outside the blade mould; supporting the stacks to maintain their relative alignment; transferring the plurality of stacks into the blade mould simultaneously while maintaining the relative alignment of stacks as the stacks are transferred; and integrating the stacks with other blade materials forming the blade in the blade mould. An apparatus for use in the method is also described.
Abstract:
A method of making a wind turbine blade (10) having a shear web (20, 22) bonded between first and second half shells (16, 18) is described. The method involves providing a web locator (40) on an inner surface of a half shell. The web locator has a fixed portion (42) and a spring portion (44) extending from the fixed portion. The spring portion is moveable relative to the fixed portion between compressed and relaxed states.
Abstract:
A method of installing a rotor on a nacelle (44) on a wind turbine generally includes providing a rotor hub counterweight assembly (10, 10′) which are rotated and lifted from a downtower location to an uptower location at which wind turbine blades (50, 52, 54) are progressively attached and the counterweights (14, 16), (14′, 16′) are progressively removed. The rotor hub and counterweight assembly (10, 10′) for use when installing a rotor on a wind turbine (46) generally includes a rotor hub (12) having first, second and third flanges (18, 20, 22), a first counterweight (14, 14′), a second counterweight (16, 16′), and a lifting apparatus connecting member (26, 26′). A lifting apparatus connecting member (26) is configured with at least two connection points (60, 62) being configured for allowing at least two of three operations including installation, rotating and lifting the rotor hub (12), and removal of the lifting apparatus connecting member (26′).
Abstract:
A connecting joint for attaching a wind turbine blade to a rotor hub includes an insert configured to be coupled to the wind turbine blade. The insert includes a main body having an outer surface configured to interface with the blade, a first tubular extension extending from the main body and having inner and outer surfaces configured to interface with the blade, and a second tubular extension extending away from the main body and having inner and outer surfaces configured to interface with the blade. A wind turbine blade having such a connecting joint is also disclosed. Additionally, a method of making a wind turbine blade including the connecting joint is disclosed.
Abstract:
A method of making a wind turbine blade in a blade mould is described. The wind turbine blade comprises a plurality of elongate reinforcing structures each comprising a stack of strips of fibre-reinforced polymeric material, and the method comprises: stacking strips of fibre-reinforced polymeric material to form a plurality of stacks (40), each defining a longitudinal axis; aligning the stacks relative to one another in an alignment zone outside the blade mould; supporting the stacks to maintain their relative alignment; transferring the plurality of stacks into the blade mould simultaneously while maintaining the relative alignment of stacks as the stacks are transferred; and integrating the stacks with other blade materials forming the blade in the blade mould. An apparatus for use in the method is also described.
Abstract:
The invention provides a method of providing a tapered edge on a sheet comprising a fibrous material, comprising moving the sheet while carrying out the following steps: —moving the sheet past a freezing device, which sheet is provided with a substance embedding the fibrous material, at least at a first edge of the sheet, which substance is in a non-solid state at room temperature, in particular at 20 degrees Celsius, and cooling the first edge using the freezing device, so that the substance at the first edge becomes solid, —moving the sheet past a machining device while the substance is solid from the cooling using the freezing device, and —machining, during the step of moving the sheet past a machining device, the first edge with the machining device to provide a first tapered edge.
Abstract:
A method of making a wind turbine blade (10) having a shear web (20, 22) bonded between first and second half shells (16, 18) is described. The method involves providing a web locator (40) on an inner surface of a half shell. The web locator has a fixed portion (42) and a spring portion (44) extending from the fixed portion. The spring portion is moveable relative to the fixed portion between compressed and relaxed states.
Abstract:
There is disclosed a method of balancing a set of first and second modular blade sections for a set of blades of a rotor of a wind turbine. The method comprises determining a mass moment of the first and second blade sections, the mass moment being determined about an axis equivalent to an axis of rotation of a hub of the turbine when the blade section is assembled onto the hub. A plurality of blade section groups 10 are defined, each comprising a first blade section of the set and at least one second blade section of the set, each blade section group having a blade section group mass moment about the axis. The first blade section and the at least one second blade section in each group are selected so as to satisfy a minimised total ballast condition, to minimise balancing ballast to be added to the set as a whole, or a minimised 15 ballasting difference condition, to minimise the difference in balancing ballast added to different blades, or both.