Abstract:
An apparatus is provided that compensates for misalignment on a synchronous data bus, the apparatus includes a replica radial distribution element, a bit lag control element, and a synchronous lag receiver. The replica radial distribution element is configured to receive a lag pulse signal, and is configured to generate a replicated strobe signal, where the replica radial distribution network includes replicated propagation path lengths, loads, and buffering of a radial distribution network for a strobe. The bit lag control element is configured to measure the time between assertion of the lag pulse signal and assertion of the replicated strobe signal, and is configured to generate a first value on a lag bus that indicates the time. The bit lag control element has delay lock control that is configured to select one of a plurality of successively delayed versions of the lag pulse signal that coincides with the assertion the replicated strobe signal, and is configured to generate a second value on a lag select bus that indicates the propagation time, where the delay lock control selects the one of a plurality of successively delayed versions of the lag pulse signal by incrementing and decrementing bus states of select inputs on a mux, and where the plurality of successively delayed versions comprises inputs to the mux, and where the plurality of successively delayed versions comprises outputs a first plurality of series-coupled matched inverter pairs. The synchronous lag receiver is coupled to the bit lag control element, and is configured to receive a first one of a plurality of radially distributed strobes and a data bit, and is configured to delay registering of the data bit by the time.
Abstract:
An apparatus is provided that compensates for misalignment on a synchronous data bus. The apparatus includes a replica radial distribution element, a bit lag control element, and a synchronous lag receiver. The replica radial distribution element is configured to receive a first signal, and is configured to generate a second signal, where the replica radial distribution element comprises replicated propagation path lengths, loads, and buffering of a radial distribution network for a strobe. The bit lag control element is configured to measure a propagation time beginning with assertion of the first signal and ending with assertion of the second signal, and is configured to generate a value on a lag bus that indicates the propagation time. The bit lag control element has delay lock control and a gray encoder. The delay lock control is configured to select one of a plurality of successively delayed versions of the first signal that coincides with the assertion of the second signal, where the delay lock control selects the one of a plurality of successively delayed versions of the first signal by incrementing and decrementing bus states of select inputs on a first mux, and where the plurality of successively delayed versions of the first signal comprises inputs to the first mux, and where the plurality of successively delayed versions comprises outputs of a first plurality of series-coupled matched inverter pairs. The gray encoder is configured to gray encode the propagation time to generate the value on the lag bus. The synchronous lag receiver is configured to receive one of a plurality of radially distributed strobes and a data bit, and is configured to delay registering of the data bit by the propagation time. The synchronous lag receiver includes a second plurality of series-coupled matched inverter pairs, a second mux, and a bit receiver. The second plurality of series-coupled matched inverter pairs is configured to generate successively delayed versions of the data bit. The second mux is coupled to the second plurality of series-coupled matched inverter pairs, is configured to receive the value on the lag bus, and is configured to select one of the successively delayed versions of the data bit that corresponds to the value. The bit receiver is configured to receive the one of the successively delayed versions of the data bit and one of a plurality of radially distributed strobe signals, and is configured to register the state of the one of the successively delayed versions of the data bit upon assertion of the one of a plurality of radially distributed strobe signals.
Abstract:
A method that compensates for misalignment on a synchronous data bus. The method includes: replicating propagation path lengths, loads, and buffering of a radial distribution network for a strobe, receiving a lag pulse signal, and generating a replicated strobe signal by employing the replicated propagation path loads lengths, and buffering; measuring the time between assertion of the lag pulse signal and assertion of the replicated strobe signal; on a lag bus, generating a value that indicates the time; within a synchronous lag receiver, receiving a first one of a plurality of radially distributed strobes and a data bit, and delaying registering of the data bit by the time.
Abstract:
A system which may be implemented on an integrated circuit including a global supply bus, a gated supply bus, a functional circuit receiving voltage from the gated supply bus, and a digital power gating system. The digital power gating system includes gating devices, a power gating control system, and a global control adjuster. The gating devices are coupled between the global and gated supply buses and are controlled by a digital control value. The power gating control system performs power gating by successively adjusting the digital control value to reduce a voltage of the gated supply bus to a state retention voltage level. The global control adjuster performs a global adjustment of the digital control value to increase the voltage of the gated supply bus to prevent it from falling below the state retention voltage level in response to an impending change of a voltage of the global supply bus.
Abstract:
A clock system receiving a reference clock signal via an alignment location and developing a functional clock signal provided to a functional circuit via a clock path. The clock system includes a low bandwidth PLL, a high bandwidth PLL, and a delay path. The low bandwidth PLL receives the reference clock signal and a feedback clock signal and provides a filtered clock signal. The high bandwidth PLL receives the filtered clock signal and provides the functional clock signal, and has a feedback input coupled to its output via a local feedback path. The delay path is coupled between the output of the low bandwidth PLL and the alignment location to provide the feedback clock signal to the low bandwidth PLL. The delay and clock paths are substantially matched. The bandwidths of the low and high bandwidth PLLs may be individually configured to reduce both input jitter and internal jitter, respectively.