Abstract:
A computer readable storage medium containing a program which, when executed by a processor, performs an operation of emulating static thread local storage of an executable software code at runtime, is disclosed. The operation includes executing the executable software code within a process memory space. During the execution of the executable software code, an occurrence of an event that is associated with a thread create operation is monitored. When the monitored event occurs, a thread data block duplicate is established within the process memory space and associated with a thread created by the thread create operation. The thread data block duplicate is configured to be accessed by executing a thread local storage callback function.
Abstract:
A method for updating and formatting a local file is described. An update file, having a newer version of the local file, is accessed from a server over a network and a list of new hash values corresponding to data blocks of the update file is retrieved. Divisions between the data blocks are located when a value of a rolling checksum reaches a particular value, the data blocks being of variable size. New hash values of the update file are compared with local hash values of the local file. For each of the new hash values not having a matching local hash value, the corresponding data block is downloaded from the server and written to a new file. For each of the new hash values having a matching local hash value, the corresponding block is copied from the local file to the new file.
Abstract:
Systems and methods described herein facilitate determining compression methods to use on an image. A client is in communication with a server that is configured to separate an image into a plurality of regions. The server is also configured to determine a first data compression method for a first set of the regions and a second data compression method for a second set of the regions, wherein the second data compression method is different from the first data compression method. Further, the server is configured to compress the first set and the second set of the regions by using the first data compression method and the second data compression method, respectively. The server is also configured to transmit the first set and the second set of the regions that have been compressed to the client.
Abstract:
A server accesses a previous frame of an image in a video and obtains hash values for each pixel in the previous frame and creates a hash map that stores each of the hash values. The server receives a current frame of the image and separates the current frame into a plurality of current blocks of pixels. The server calculates, using a hash function, a hash value for each of the current blocks of pixels. The server compares the hash values in the hash map with the hash values associated with the current frame and identifies a hash value in the hash map that matches a hash value in the current frame. The server compresses the current frame for transmission to a client using the identified matching hash values and pre-calculates a new hash map based on the current frame for use in compressing a next frame of the video.
Abstract:
A graphical user interface (GUI) is polled to identify updates for transmission to a client device. A generalized poll of the GUI is conducted at a first frequency, wherein the poll compares color values of each pixel in a general region of the GUI with a previously known color value for that pixel to detect changed pixel color values. A local region that is a subset of the general region is determined to have a greater likelihood of being updated, e.g., regions encompassing a location of mouse and/or keyboard activity. A localized poll is conducted at a second frequency of only the local region of the GUI.
Abstract:
A method for updating and formatting a local file is described. An update file, having a newer version of the local file, is accessed from a server over a network and a list of new hash values corresponding to data blocks of the update file is retrieved. Divisions between the data blocks are located when a value of a rolling checksum reaches a particular value, the data blocks being of variable size. New hash values of the update file are compared with local hash values of the local file. For each of the new hash values not having a matching local hash value, the corresponding data block is downloaded from the server and written to a new file. For each of the new hash values having a matching local hash value, the corresponding block is copied from the local file to the new file.
Abstract:
A method for updating and formatting a local file is described. An update file, having a newer version of the local file, is accessed from a server over a network and a list of new hash values corresponding to data blocks of the update file is retrieved. Divisions between the data blocks are located when a value of a rolling checksum reaches a particular value, the data blocks being of variable size. New hash values of the update file are compared with local hash values of the local file. For each of the new hash values not having a matching local hash value, the corresponding data block is downloaded from the server and written to a new file. For each of the new hash values having a matching local hash value, the corresponding block is copied from the local file to the new file.
Abstract:
A hooking system for hooking predetermined references to predetermined dynamically loaded library (DLL) functions includes a DLL version identifier provided by a hook entry code to an enhanced hook. The hook entry code is dynamically generated during runtime of an affected software application. The version identifier enables unambiguous communication of a single enhanced hook with functions of multiple versions of identically named DLLs loaded into the same isolated process memory area.
Abstract:
A method for linking a plurality of virtualized application packages for execution on a computer system is described. A runtime executable of a primary virtualized application package is launched. A secondary virtualized application package to be merged with the primary virtualized application package is identified. In one embodiment, application settings and file data for the first and second virtualized application packages are merged into a single data structure. An execution layer is created by starting execution of one of the application files associated with the primary virtualized application package. Requests from the execution layer to the operating system for configuration settings and contents of application files of either the primary virtualized application package or secondary virtualized application package and providing requested configuration settings are satisfied using configuration settings and file information from both the primary and secondary virtualized application packages.
Abstract:
A graphical user interface (GUI) is polled to identify updates for transmission to a client device. A generalized poll of the GUI is conducted at a first frequency, wherein the poll compares color values of each pixel in a general region of the GUI with a previously known color value for that pixel to detect changed pixel color values. A local region that is a subset of the general region is determined to have a greater likelihood of being updated, e.g., regions encompassing a location of mouse and/or keyboard activity. A localized poll is conducted at a second frequency of only the local region of the GUI.