摘要:
An apparatus for handling bus error signals is provided for a computer having a processor, an interrupt controller, a first PCI bus with first PERR# and SERR# signals, and a second PCI bus with second PERR# and SERR# signals. The apparatus has a buffer with an input connected to ground, an enable input connected to the second SERR# signal, and an output connected to the first SERR# signal. When the second SERR# signal is asserted, the first SERR# signal is also asserted via the buffer and is provided to one input of the interrupt controller. In an alternate embodiment, the buffer enable input is connected to the first SERR# signal and the buffer output connected to the second SERR# signal. The apparatus also receives the first and second PERR# signals and logically ORs the signals together to generate a combined PERR# signal. The combined PERR# signal is presented to a register which is clocked by the PCI system clock to synchronize the combined PERR# signal to the PCI clock before presenting the PERR# signal to a second input of the interrupt controller. The interrupt controller generates an interrupt to the processor and causes the processor to poll devices to identify the board that might have caused the error and to take a corrective action.
摘要:
An apparatus is disclosed for smoothly multiplying the frequency of a computer's basic clock during a burst transfer cycle and smoothly resuming the basic clock frequency upon completing the burst transfer cycle. A fixed frequency multiplier is connected to the basic clock to generate a clock whose frequency is a multiple of the basic clock frequency. A decoder which operates synchronously with the fixed frequency multiplier clock responds to control signals of the expansion bus to detect the start and the end of a burst transfer cycle. The decoder also toggles a speed-up signal during the burst transfer cycle on the rising edges of the fixed frequency multiplier clock. The speed-up signal and the basic clock is provided to a variable frequency multiplier which multiplies the frequency of the basic clock when the speed-up signal is toggled and reproduces the frequency of the basic clock when the speed-up signal is deasserted, thus providing a clock signal whose rising edges are aligned with the rising and falling edges of the basic clock and whose frequency is a multiple of the basic clock frequency during the burst transfer cycle.
摘要:
A computer system has a processor bus under control of the microprocessor itself, and this bus communicates with main memory, providing high-performance access for most cache fill operations. In addition, the system includes one or more expansion buses, preferably of the PCI type in the example embodiment. A host-to-PCI bridge is used for coupling the processor bus to the expansion bus. Other buses may be coupled to the PCI bus via PCI-to-(E) ISA bridges, for example. The host-to-PCI bridge contains queues for posted writes and delayed read requests. All transactions are queued going through the bridge, upstream or downstream. The system bus is superpipelined, in that transactions overlap. A fast burst transactions are allowed between the bridge and main memory, i.e., requests which can be satisfied without deferring or retrying are applied to the system bus without waiting to get a response from the target. A range of addresses (e.g., system memory addresses) is defined to be a fast burst range, and any address in this range is treated differently compared to addresses outside the range. The bridge is programmed, by configuration cycles, to establish this fast burst range, within which it is known that an out-of-order response will not be received. When a transaction reaches a bridge interface from the PCI bus, and it is recognized that the address is within the fast burst range, then the fast burst mode is allowed, and write or read requests can be issued without waiting for the snoop phase, since there is no possibility of defer or retry.
摘要:
A computer system with an Intelligent Input/Output architecture having a scheme for hiding at least a portion of peripheral devices. The computer system comprises at least one host processor for executing a host operating system, the host processor disposed on a host bus, a first input/output (I/O) bus operably coupled to the host bus via a host-to-bus bridge, and a plurality of peripheral devices operably connected to the I/O bus for transferring data in I/O transactions. A masking module is provided for rendering at least a portion of the plurality of peripheral devices hidden from the host operating system and host processors. The masking module is configured upon system initialization and the contents of the module are used in blocking IDSEL signals associated with the portion of peripheral devices subordinated to an I/O processor.
摘要:
A bridge device for delivering data transactions between devices on two data buses in a computer system includes, for each pair of devices that may transact across the bridge device, a dedicated storage area that aids in completing transactions between the devices in the pair. The bridge device also includes a controller that allows transactions in one dedicated storage area to be completed without regard to the completion of earlier-issued transactions in another dedicated storage area.
摘要:
An apparatus is disclosed for predicting and making available in advance certain information, namely the address signals from an expansion bus, so as to relax the timing requirement of the burst transfer cycle. A decoder responds to the control signals of the expansion bus to detect the start and the end of a burst transfer cycle. The decoder controls a counter, which stores the initial address signals of the expansion bus at the start of the burst transfer cycle and predicts the initial address signals by incrementing the address signals during the burst transfer cycle. A multiplexer couples either the predicted address signal to the multiplexer output during the burst transfer cycle or the address signal of the EISA bus to the multiplexer output when the computer system is not performing the EMB burst transfer cycle. In another aspect of the present invention, the low order address signal of the bus is predicted using a second counter. The output of the second counter is merged into the low order address signal of the bus interface devices to properly index the second word of the burst transfer cycle.
摘要:
A computer system has a processor bus under control of the microprocessor itself, and this bus communicates with main memory, providing high-performance access for most cache fill operations. In addition, the system includes one or more expansion buses, preferably of the PCI type in the example embodiment. A host-to-PCI bridge is used for coupling the processor bus to the expansion bus. Other buses may be coupled to the PCI bus via PCI-to-(E) ISA bridges, for example. The host-to-PCI bridge contains queues for posted writes and delayed read requests. All transactions are queued going through the bridge, upstream or downstream. According to a feature of the invention, provision is made for split transactions, i.e., a read request which is not satisfied while the processor requesting it is still on the bus, but instead the bus is relinquished and other transactions intervene before the read result is available. A contemporary microprocessor such as a P6 has a deferred transaction protocol to implement split transactions, but this protocol is not available on a PCI bus. Split transactions are done by a "retry" command on a PCI bus, wherein a read request that cannot be completed immediately is queued and a "retry" response is sent back to the requester on the bus; this instructs the requester to retry (send the same command again) at a later time.
摘要:
A computer system has a processor bus under control of the microprocessor itself, and this bus communicates with main memory, providing high-performance access for most cache fill operations. In addition, the system includes one or more expansion buses, preferably of the PCI type in the example embodiment. A host-to-PCI bridge is used for coupling the processor bus to the expansion bus. Other buses may be coupled to the PCI bus via PCI-to-(E) ISA bridges, for example. The host-to-PCI bridge contains queues for posted writes and delayed read requests. All transactions are queued going through the bridge, upstream or downstream. The system bus is superpipelined, in that transactions overlap. A fast burst transactions are allowed between the bridge and main memory, i.e., requests which can be satisfied without deferring or retrying are applied to the system bus without waiting to get a response from the target. A range of addresses (e.g., system memory addresses) is defined to be a fast burst range, and any address in this range is treated differently compared to addresses outside the range. The bridge is programmed, by configuration cycles, to establish this fast burst range, within which it is known that an out-of-order response will not be received. When a transaction reaches a bridge interface from the PCI bus, and it is recognized that the address is within the fast burst range, then the fast burst mode is allowed, and write or read requests can be issued without waiting for the snoop phase, since there is no possibility of defer or retry.
摘要:
The present invention relates to a fault tolerant system for providing power to a multiple central processing unit computer system. Three DC-DC converters, each sized for providing power to one central processing unit, furnish power to two central processing units through two power planes. Each DC-DC converter has an output voltage level selectable through a voltage identification signal. If the voltage identification signals of the converters match, identification logic couples the power planes together. If only one converter is available to power the two central processing units, a stopclock logic circuit alternatively places the central processing units in known stopclock modes. Thus, the single converter only has to fully power one central processing unit at any one time.