Abstract:
A method includes providing, to a user device, an identification of a superset of potential video programs that are available to be scheduled for multicast to a content distribution area that includes a cell associated with the user device. The method also includes receiving a selection of a subset of the potential video programs from the user device and a location associated with the user device. The method further includes generating at least one content distribution area based on the location of the user device and the selection of the subset of the potential video programs.
Abstract:
A server device may store information identifying that one or more first user devices, currently connected to a network device via a particular band, should continue to communicate via the particular band when a connection threshold, associated with the particular band, has been exceeded. The particular band may be associated with a multicast service that provides multicast content to the one or more first user devices via the particular band. The server device may determine that the connection threshold has been exceeded; identify a second user device, currently connected to the network device via the particular band, that should no longer communicate via the particular band when the connection threshold has been exceeded disconnected; and prevent the second user device from communicating via the particular band based on determining that the connection threshold has been exceeded and identifying the second user device.
Abstract:
A method, a device, and a non-transitory storage medium are described in which a inter-networked lawful intercept service is provided. The inter-networked lawful intercept service may include providing lawful intercept information from a proxy call session control function to a future generation core network device. The proxy call session control function may be resident in an Internet Protocol Multimedia Subsystem network. The proxy call session control function may use a Diameter message that includes the lawful intercept information. The future generation core network device may be a policy control function. The lawful intercept information may be further provided to other core network devices, such as a session management function and a use plane function.
Abstract:
Systems and methods receive first traffic originating from a mobile device and second traffic originating from second devices tethered to the mobile device; tag the first traffic to indicate that the traffic originates from the mobile device; tag the second traffic to indicate that the traffic originates from the second devices; receive subscriber data that includes a first threshold and a second threshold, wherein the first threshold is associated with the first traffic originating from the mobile device and the second threshold is associated with the second traffic originating from the second devices tethered to the mobile device; determine that an amount of the second traffic exceeds the second threshold; rate limit the second traffic without rate limiting the first traffic when the amount of the second traffic exceeds the second threshold and an amount of the first traffic does not exceed the first threshold.
Abstract:
Systems and methods receive first traffic originating from a mobile device and second traffic originating from second devices tethered to the mobile device; tag the first traffic to indicate that the traffic originates from the mobile device; tag the second traffic to indicate that the traffic originates from the second devices; receive subscriber data that includes a first threshold and a second threshold, wherein the first threshold is associated with the first traffic originating from the mobile device and the second threshold is associated with the second traffic originating from the second devices tethered to the mobile device; determine that an amount of the second traffic exceeds the second threshold; rate limit the second traffic without rate limiting the first traffic when the amount of the second traffic exceeds the second threshold and an amount of the first traffic does not exceed the first threshold.
Abstract:
A device may receive information identifying a first sub-frame being transmitted by a base station via a first radio frame. The first sub-frame may be reserved for providing a particular set of transmissions. The device may identify a second sub-frame, that is to be transmitted by the device via a second radio frame and that corresponds to the first sub-frame. The second sub-frame being included in a second radio frame. The device may blank the second sub-frame based on identifying the second sub-frame that corresponds to the first sub-frame. The device may transmit the second radio frame with the blanked second sub-frame.
Abstract:
A small cell device may communicate with a user device (e.g., a smartphone, a tablet computer, etc.) via a range extender device that extends the effective range of the small cell device to the user device. The small cell device, the range extender device, and the user device may communicate with one another using channels of a licensed spectrum (e.g., traditional LTE channels). The range extender device may determine channel conditions corresponding to an unlicensed spectrum (e.g., 5 Gigahertz (GHz) Spectrum) and communicate the channel conditions to the small cell device. Based on the channel conditions, the small cell device and the range extender device may select downlink-only channels of the unlicensed spectrum and cause the downlink capabilities of the channels of the unlicensed spectrum to be augmented by the downlink capabilities of the downlink-only channels of the unlicensed spectrum.
Abstract:
A method includes providing, to a user device, an identification of a superset of potential video programs that are available to be scheduled for multicast to a content distribution area that includes a cell associated with the user device. The method also includes receiving a selection of a subset of the potential video programs from the user device and a location associated with the user device. The method further includes generating at least one content distribution area based on the location of the user device and the selection of the subset of the potential video programs.
Abstract:
Carrier aggregation may be performed using licensed (e.g., LTE) and unlicensed (e.g., LTE-U) spectrum in which the amount of data associated with users may be separately tracked for the licensed and unlicensed communications. The tracking for the amount of licensed and unlicensed data may be performed at base stations associated with a wireless network. In some implementations, a base station may maintain a number of profiles that each indicate how and/or when carrier aggregation is to be divided or performed.
Abstract:
Techniques described herein relate to the dynamic modification of the serving band used by small cells in a heterogeneous network (HetNet) environment. The serving band may be modified to mitigate interference with macrocell eMBMS services. In various implementations, and based on scheduled eMBMS services, a small cell may switch the frequency band of the small cell, suspend service, and/or reduce the transmit power of the small cell.