摘要:
Processes for compressing images with sparse histograms are disclosed. The image is divided into blocks, and a bit budget is assigned for each block. The pixels of a block are converted and coded bit-plane by bit-plane, starting from the Most Significant Bit (MSB) and going towards the Least Significant Bit (LSB). The pixels of the block are partitioned into groups. Each group contains pixels that have same value. Moving from the MSB to the LSB, the groups in each bit-plane are processed. When processing a group, the encoder sends a “0” if all group members have same bit value at the current bit-plane being processed, followed by the bit value; otherwise, the encoder sends a “1”, followed by refinement bits for each pixel of the group, and the encoder splits the group.
摘要:
Embedded Graphics Coding (EGC) is used to encode images with sparse histograms. In EGC, an image is divided into blocks of pixels. For each block, the pixels are converted into binary representations. For each block, the pixels are scanned and encoded bit-plane by bit-plane from the most significant bit-plane (MSB) to the least significant bit-plane (LSB). The pixels in the block are partitioned into groups. Each group contains pixels with the same value. From the MSB to the LSB, the groups in the current bit plane are processed. During the processing, a group is split into two, if pixels in the group have different bit values in the bit-plane being encoded. Then, the encoder sends the refinement bit for each pixel in the group and the encoder splits the original group into two. A method is described herein to compress the refinement bits which employs context-adaptive prediction and binary run-length coding.
摘要:
Adaptive entropy encoding and decoding which utilizes Set Partitioning within Generalized Hierarchical Trees (SPRIGHT) and a method of designing trees utilizing directionality. After decorrelation and quantization a tree structure is selected from multiple candidates, based on geometric relationships within the image block, for coding the coefficients toward improving zero-clustering of coefficients. Trees for the SPRIGHT encoding are created in response to finding frequency position of each coefficient and scaling frequency position followed by use of octave-band partitioning of coefficient patterns into squares and L-shapes, and the L-shapes are iteratively partitioned into squares. The tree comprises leaf nodes containing coefficients associated with each non-leaf node. The number of zero clustered coefficients can be increased, thus decreasing the number of nodes coded into the encoded image output.
摘要:
Processes for compressing images with sparse histograms are disclosed. The image is divided into blocks, and a bit budget is assigned for each block. The pixels of a block are converted and coded bit-plane by bit-plane, starting from the Most Significant Bit (MSB) and going towards the Least Significant Bit (LSB). The pixels of the block are partitioned into groups. Each group contains pixels that have same value. Moving from the MSB to the LSB, the groups in each bit-plane are processed. When processing a group, the encoder sends a “0” if all group members have same bit value at the current bit-plane being processed, followed by the bit value; otherwise, the encoder sends a “1”, followed by refinement bits for each pixel of the group, and the encoder splits the group.
摘要:
A method of coding High Definition (HD) color pictures is described. The method divides the HD picture into individual bit planes of the three colors. The method then interleaves the bit planes such that bit planes of the three colors having the same significance are coded together. The method codes a block of the picture based on the bit distribution in corresponding groups of the corresponding bit planes of the three colors. The method performs a first level grouping of bits in a bit plane of an image and a second level grouping of the first level grouping bits of different color components within a group.
摘要:
Adaptive entropy encoding and decoding utilizing set partitioning within generalized hierarchical trees which is applicable to both embedded and non-embedded encoding. After decorrelation and quantization during encoding, a tree structure is selected from multiple candidates, based on geometric relationships within the image block, for coding the coefficients toward improving coefficient zero clustering. The tree structure has leaf and non-leaf nodes in a specified arrangement, with leaf nodes containing coefficients associated with each non-leaf node. By proper tree selection, the number of zero clustered coefficients which may be eliminated from the encoded output stream is increased. During decoding, a tree structure compatible with the encoding for the current block is used for decoding the existing coefficients from the symbol stream and restoring missing zero coefficients.
摘要:
A method of and system for encoding high definition video content using embedded graphics coding is described. The method determines if the video content includes an RGB or YUV444 color format or a YUV422 color format. If the color scheme includes RGB or YCbCr444 data and separate encoding is used, then all three color components are encoded separately using scalar EGC. If the color scheme includes RGB or YCbCr444 data and joint encoding is used, then all three color components are jointly encoded using joint scalar EGC. If the color scheme includes YCbCr422 data and separate encoding is used, then Y, U and V are encoded separately using scalar EGC. If the color scheme includes YCbCr422 data and joint encoding is used, then Y is encoded by itself using scalar EGC and U and V are jointly encoded using joint scalar EGC.
摘要:
Bi-directional bitstream ordering is able to be used for expedited processing. The first part of the bitstream is coded in a standard format, but the end of the bitstream is coded in reverse order. In encoding and decoding, parallel processing is able to be implemented to provide more efficient (parallel and hence faster) encoding and decoding where a bitstream is separated and processed in parallel.
摘要:
Adaptive entropy encoding and decoding utilizing set partitioning within generalized hierarchical trees which is applicable to both embedded and non-embedded encoding. After decorrelation and quantization during encoding, a tree structure is selected from multiple candidates, based on geometric relationships within the image block, for coding the coefficients toward improving coefficient zero clustering. The tree structure has leaf and non-leaf nodes in a specified arrangement, with leaf nodes containing coefficients associated with each non-leaf node. By proper tree selection, the number of zero clustered coefficients which may be eliminated from the encoded output stream is increased. During decoding, a tree structure compatible with the encoding for the current block is used for decoding the existing coefficients from the symbol stream and restoring missing zero coefficients.
摘要:
Intra prediction is used in state-of-the-art video coding standards such as AVC. The intra prediction modes are coded into the bitstream. Luma and chroma components could potentially have different prediction modes. For chroma components, there are 7 different modes defined in AVC: vertical, horizontal, DC, diagonal directions, and “same as luma”. Statistics show that the “same as luma” mode is frequently used, but in AVC, this mode is encoded using more bits than other modes during entropy coding, therefore the coding efficiency is decreased. Accordingly, a modified binarization/codeword assignment for chroma intra mode signaling is able to be utilized for high efficiency video coding (HEVC), the next generation video coding standard.