Abstract:
An interactive game environment includes two or more co-located, networked, direction and location aware interactive game devices. The game devices share a common reference coordinate frame (e.g., a three-dimensional Cartesian coordinate frame). Each game device maintains its own device state (e.g., position, orientation, time) in the reference coordinate frame. Each interactive game device shares its device state with the other interactive game devices using communication technology (e.g., Bluetooth, Wi-Fi, cellular). Each interactive game device can use the device states of the other interactive game devices to project the relative positions and orientations of the other interactive game devices into a local, fixed coordinate frame of the interactive game device. These projections allow each interactive gaming device to know the position and orientation of the other interactive game devices in an interactive game environment defined by the reference coordinate frame.
Abstract:
Methods and apparatus for intelligent scheduling of client device tasks based on one or more network scheduling constraints. During normal network operation, a client device performs an array of scheduled maintenance tasks to optimize network performance (e.g., signal strength measurements, etc.) However, during hybrid network operation, regularly scheduled maintenance tasks for a first network can interrupt higher priority tasks on other networks. Consequently, the present invention in one embodiment provides a method for a client device to properly prioritize and re-schedule maintenance tasks. For example, CDMA 1X cell selection (or cell re-selection) procedures have flexible time constraints, and can be postponed (or expedited) to minimize impact on LTE network traffic.
Abstract:
An interactive game environment includes two or more co-located, networked, direction and location aware interactive game devices. The game devices share a common reference coordinate frame (e.g., a three-dimensional Cartesian coordinate frame). Each game device maintains its own device state (e.g., position, orientation, time) in the reference coordinate frame. Each interactive game device shares its device state with the other interactive game devices using communication technology (e.g., Bluetooth, Wi-Fi, cellular). Each interactive game device can use the device states of the other interactive game devices to project the relative positions and orientations of the other interactive game devices into a local, fixed coordinate frame of the interactive game device. These projections allow each interactive gaming device to know the position and orientation of the other interactive game devices in an interactive game environment defined by the reference coordinate frame.
Abstract:
An interactive game environment includes two or more co-located, networked, direction and location aware interactive game devices. The game devices share a common reference coordinate frame (e.g., a three-dimensional Cartesian coordinate frame). Each game device maintains its own device state (e.g., position, orientation, time) in the reference coordinate frame. Each interactive game device shares its device state with the other interactive game devices using communication technology (e.g., Bluetooth, Wi-Fi, cellular). Each interactive game device can use the device states of the other interactive game devices to project the relative positions and orientations of the other interactive game devices into a local, fixed coordinate frame of the interactive game device. These projections allow each interactive gaming device to know the position and orientation of the other interactive game devices in an interactive game environment defined by the reference coordinate frame.
Abstract:
A method performed by a mobile device to register for cellular data connection service provided by a mobile telecommunications service provider. The mobile device determines that it does not have a valid cellular data connection subscription with the mobile telecommunications service provider. Responsive to that determination, the mobile device connects to a cellular data connection service registration site to allow a user of the mobile device to register for data connection service provided by the mobile telecommunications service provider. The mobile device is limited to accessing the data connection service registration site until the user registers for data connection service.
Abstract:
Various embodiments for providing multi-band operation in a mobile computing device are described. In one or more embodiments, a mobile computing device may be arranged to support quad-band GSM communication in the GSM-850, GSM-900, GSM-1800, and GSM-1900 frequency bands. The mobile computing device may be arranged to determine a starting frequency band based on the home country and home network. By using the determined starting frequency band associated with the home country and home network of the user, fewer and/or shorter delays may be experienced when searching for and acquiring an available frequency. Once a network search is completed, the mobile computing device may be arranged to determine whether a network can be found in current frequency band pair for normal service, to disconnect from the acquired network if normal service is not supported, and to intelligently search for an available frequency in a different frequency band. Other embodiments are described and claimed.
Abstract:
A system (and a method) are disclosed to access to secured services that are located behind a firewall. In one embodiment, the system receives at an authentication server a request to access the secured services. The request includes an identification of a mobile telephony device. The system transmits the identification of a mobile telephony device to a mobile telephone network server. The mobile telephone network server generates and transmits at least one security challenge that is forwarded to the mobile telephony device. In response, the mobile telephony device generates at least one response to the at least one security challenge, which gets forwarded to the mobile telephone network server. The mobile telephone network server notifies the authentication server if the response has been appropriately verified, and if so, the system allows the authentication server to allow access to the secured services, e.g., through an authenticated session.