摘要:
An improved ink jet printhead is disclosed which comprises an upper and a lower substrate that are mated and bonded together with a thick insulative layer sandwiched therebetween. One surface of the upper substrate has etched therein one or more grooves and a recess which, when mated with the lower substrate, will serve as capillary-filled ink channels and ink supplying manifold respectively. The grooves are open at one end and closed at other end. The open ends will serve as the nozzles. The manifold recess is adjacent the groove closed ends. Each channel has a heating element located upstream of the nozzle. The heating elements are selectively addressable by input signals representing digitized data signals to produce ink vapor bubbles. The growth and collapse of the bubbles expel ink droplets from the nozzles and propel them to a recording medium. Recesses patterned in the thick layer expose the heating elements to the ink, thus placing them in a pit, and provide a flow path for the ink from the manifold to the channels by enabling the ink to flow around the closed ends of the channels, thereby eliminating the fabrication steps required to open the groove closed ends to the manifold recess, so that the printed fabrication process is simplified.
摘要:
Several fabricating processes for ink jet printheads are disclosed, each printhead being composed of two parts aligned and bonded together. One part is a substantially flat substrate which contains on the surface thereof a lineal array of heating elements and addressing electrodes, and the second part is a substrate having at least one recess anisotropically etched therein to serve as an ink supply manifold when the two parts are bonded together. A lineal array of parallel grooves are formed in the second part, so that one end of the grooves communicate with the manifold recess an the other ends are open for use as an ink droplet expelling nozzles. Many printheads can be made simultaneously by producing a plurality of sets of heating elements array with their addressing electrodes on a silicon wafer and by placing alignment marks thereon at predetermined locations. A corresponding plurality of sets of channels and associated manifolds are produced in a second silicon wafer and, in one embodiment, alignment openings are etched thereon at predetermined locations. The two wafers are aligned via the alignment openings and alignment marks, then bonded together and diced into many separate printheads. A number of printheads can be fixedly mounted in a pagewidth configuration which confronts a moving recording medium for pagewidth printing or individual printheads may be adapted for carriage type ink jet printing.
摘要:
A nuclear camera (10) includes a plurality of detector heads (12) which have collimators (14) for fixing the trajectory along which radiation is receivable. A rotating gantry (22) rotates the detector heads around the subject collecting less than 360° of data, e.g., 204° of data. A zero-filling processor (50) generates zero-filled projection views such that the actually collected projection views and the zero-filled projection views span 360°. A smoothing processor (56) smooths an interface between the zero-filled and actually collected projection views. The zero-filled and smoothed views are Fourier transformed (60) into frequency space, filtered with a stationary deconvolution function (62), and Fourier transformed (64) back into real space. The resolution recovered projection data sets in real space are reconstructed by a reconstruction processor (68) into a three-dimensional image representation for storage in an image memory (70).
摘要:
A method and Apparatus for protection of semiconductor micromechanical devices that use circuits with dynamic logic addressing is disclosed. In one exemplary embodiment of the invention, a fail-safe circuit is provided for an ink jet print head integrated circuit which prevents a catastrophic consequence of the dynamic logic addressed integrated circuit losing its charge.
摘要:
A method for electrical tailoring of thermal ink jet heater elements. The resistance of ink-jet heater elements formed of polysilicon is changed by applying energy through the resistor element of varying amounts at varying pulse widths. The application of pulsed current for up to 1 second total pulse width at voltages of up to 50 volts decreases the resistance by as much as thirty percent or more of the as fabricated values.
摘要:
A system controls an ink jet printing apparatus for propelling ink jet droplets on demand from a printhead having a plurality of drop ejectors. In the printhead, each ejector includes a heating element actuable in response to electrical input signals, each input signal having an amplitude and a time duration, selectably applied to the heating element to produce a temporary vapor bubble and cause a quantity of ink to be emitted for the creation of a mark on a copy sheet. The temperature of ink in the printhead is sensed, and a combination of power level and time duration of the electrical input signal for the heating element to result in a desired size of the mark of the copy sheet is selected, by entering the sensed temperature of the ink into a predetermined function relating the energy of the electrical input signal to the corresponding resulting size of the mark on the copy sheet.
摘要:
A multi-color roofshooter type thermal ink jet printhead includes a common heater substrate having at least two arrays of heating elements and a corresponding number of elongated feed slots, each heater array being located adjacent its corresponding feed slot. A common channel substrate is layered above a heater substrate and includes arrays of nozzles corresponding in number to the arrays of heating elements, each nozzle array communicating with one of the feed slots on the heater substrate. Each nozzle array is isolated from an adjacent nozzle array and each nozzle of each nozzle array is aligned above a respective heating element of a corresponding heater array. Each of the heater arrays is individually addressed and driven by switching circuitry located on the heater substrate adjacent to its corresponding heater array. The switching circuitry can be active driver matrices corresponding in number to the arrays of heating elements. The locations of the driver matrices preferably alternate with locations of the feed slots. With this construction, multi-color printheads can be efficiently arranged on a single wafer, so that silicon real estate is conserved. The switching circuitry can also be used to address an array of heating elements in a mono-color thermal inkjet printhead. In a preferred embodiment, inputs of the switching circuitry extend from sides of the switching circuitry whereby distances between adjacent feed slots are minimized.
摘要:
Disclosed is a method of fabricating a precision etched, three dimensional device from a silicon wafer, wherein the etching is done from one side of the wafer using a two step silicon etching process. A two-sided deposition of a robust protective layer, such as polycrystalline silicon, is placed over a two-sided deposition of a chemical masking layer such as silicon dioxide. The two layers are concurrently patterned with first and second sets of vias on one side of the wafer, while the opposite side is protected by the protective layer. The protective layer is removed to permit deposition of a second masking layer such as silicon nitride, followed by deposition of a second protective layer. Again, the second protective layer prevents damage to the fragile second masking layer on the wafer backside while its frontside is patterned with a similar set of vias aligned with the first set of vias in the first masking layer. This similar set of vias is sequentially formed in both the second protective layer and the underlying second masking layers. Then the wafer is placed in an etchant bath so that the first set of recesses is anisotropically etched in the wafer frontside side. Next, the second protective layer and second masking layer are removed to permit anisotropic etching of the second set of recesses through the second set of vias in the first masking layer. If the protective layer is polycrystalline silicon, it is concurrently etch-removed during the initial etching of the silicon wafer.
摘要:
A large array ink jet printhead is disclosed having two basic parts, one containing an array of heating elements and addressing electrodes on the surface thereof, and the other containing the liquid ink handling system. At least the part containing the ink handling system is silicon and is assembled from generally identical sub-units aligned and bonded side-by-side on the part surface having the heating element array. Each channel plate sub-unit has an etched manifold with means for supplying ink thereto and a plurality of parallel ink channel grooves open on one end and communicating with the manifold at the other. The surfaces of the channel plate sub-units contacting each other are {111} planes formed by anisotropic etching. The channel plate sub-units appear to have a parallelogram shape when viewed from a direction parallel with and confronting the ink channel groove open ends. The heating element array containing part may also be assembled from etched silicon sub-units with their abutting surfaces being {111} planes. In another embodiment, a plurality of channel plate sub-units are anisotropically etched in a silicon wafer and a plurality of heating element sub-units are formed on another silicon wafer. The heating element wafer is also anisotropically etched with elongated slots. The wafers are aligned and bonded together, then diced into complete printhead sub-units which have abutting side surfaces that are {111} planes for accurate side-by-side assembly.
摘要:
Several fabricating processes for ink jet printheads are disclosed, each printhead being composed of two parts aligned and bonded together. One part is a substantially flat substrate which contains on the surface thereof a lineal array of heating elements and addressing electrodes, and the second part is a substrate having at least one recess anisotropically etched therein to serve as an ink supply manifold when the two parts are bonded together. A lineal array of parallel grooves are formed in the second part, so that one end of the grooves communicate with the manifold recess an the other ends are open for use as an ink droplet expelling nozzles. Many printheads can be made simultaneously by producing a plurality of sets of heating elements array with their addressing electrodes on a silicon wafer and by placing alignment marks thereon at predetermined locations. A corresponding plurality of sets of channels and associated manifolds are produced in a second silicon wafer and, in one embodiment, alignment openings are etched thereon at predetermined locations. The two wafers are aligned via the alignment openings and alignment marks, then bonded together and diced into many separate printheads. A number of printheads can be fixedly mounted in a pagewidth configuration which confronts a moving recording medium for pagewidth printing or individual printheads may be adapted for carriage type ink jet printing.