Abstract:
The present invention relates to seals and, in particular, to a seal that retains lubrication between the interface of a spline shaft and a sleeve shaft, which move relative to each other. The seal body has a flexible body with an axis and alternating projections and recesses aligned with the axis. A wiper element on at least one of the rows of projections and alternating recesses includes a tapered surface extending away from the axis, and an engagement face substantially perpendicular to the axis and adjoining the tapered surface.
Abstract:
Dry powder inhalers for dispensing pharmaceutical grade formulations of inhalable dry powder include: an inhaler housing having a mouthpiece associated therewith; and a slidably extendable forward member that is movable between retracted and extended positions, held by the inhaler housing adjacent the mouthpiece. In the extended position, the forward member extends outward a distance beyond a forwardmost portion of the mouthpiece, and in the retracted position, a forwardmost portion of the forward member is positioned rearward of the forwardmost portion of the mouthpiece with an access portion of the mouthpiece accessible by a user.
Abstract:
Dry powder blister packages include sealed blisters with a piezoelectric active layer that flexes to vibrate the dry powder in a blister to facilitate active dispersion.
Abstract:
In an example method, first electrical power is generated using one or more solar panels. Saline water is desalinated using a desalination facility powered, at least in part, by the first electrical power. The desalinated water is stored in a reservoir located at a first elevation. A usage of an electrical grid is monitored, and a determination is made that one or more criteria are satisfied at a first time. In response, the desalinated water is directed from the reservoir to a turbine generator located at a second elevation, second electrical power is generated using the turbine generator, the desalinated water is directed from the turbine generator into an aquifer located at a third elevation, and at least a portion of the second electrical power is provided to the electrical grid.
Abstract:
Extracting energy from a naturally-occurring underground hot rock formation includes enabling fluid to flow, at least partially under the influence of gravity, through a fluid injection well to the hot rock formation, converting the kinetic energy of the flowing fluid into electricity, using at least a portion of the generated electricity to preheat the fluid before it reaches the hot rock formation, heating the fluid with the hot rock formation and, subsequently, extracting energy from the heated fluid for use in connection with an application.
Abstract:
Hydroelectric pumped-storage includes monitoring electrical demand on a system over time. If the monitored demand exceeds a predetermined first value, fluid is allowed to flow substantially under the influence of gravity from a first aquifer to a second aquifer. Kinetic energy from the flowing fluid is converted into electrical energy. If the monitored demand drops below a predetermined second value, fluid from the second aquifer is moved to the first aquifer.
Abstract:
A system and method that utilizes aquifer pressure to generate electrical energy. The system includes an aquifer, a well fluidly coupled to the aquifer, a pump and a turbine. The pump is arranged to cause water to flow out of the well. In response to the water flowing out of the well, replenishing water flows naturally from the aquifer into the well. A turbine-generator is arranged to convert kinetic energy of the replenishing water flow into electrical energy.
Abstract:
A system and method that utilizes aquifer pressure to generate electrical energy. The system includes an aquifer, a well fluidly coupled to the aquifer, a pump and a turbine. The pump is arranged to cause water to flow out of the well. In response to the water flowing out of the well, replenishing water flows naturally from the aquifer into the well. A turbine-generator is arranged to convert kinetic energy of the replenishing water flow into electrical energy.
Abstract:
Fluid is introduced to one or more underground fluid passages in thermal contact with a hot rock formation. Kinetic energy of the fluid being introduced is converted into electrical energy. The introduced fluid absorbs heat from the hot rock formation. That absorbed heat is extracted from the heated fluid for use in connection with a domestic or industrial application.