Abstract:
An imaging member outer layer comprising a structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein the structured organic film further includes fluorinated segments and capping units comprising hole transport materials.
Abstract:
An overcoat layer comprises a structured organic film (SOF) comprising a plurality of segments and a plurality of linkers including a first fluorinated segment and a second electroactive segment, and an antioxidant is present in the SOF; and a hole transport molecule which does not form a network with the SOF.
Abstract:
A method and apparatus for displaying a reflective image in response to light emitted from an emissive display is disclosed. An apparatus includes an emissive display, a processor in communication with the emissive display, and an electronic cover proximate to the emissive display. The electronic cover includes a passive display layer having a plurality of passive display elements and a photosensitive layer responsive to emitted light from the emissive display. A method includes forming an emitted light image on the emissive display and exposing the photoconductor layer of the electronic cover to an emitted light image, causing the plurality of passive display elements to form a reflective image on the passive display layer so that the reflective image corresponds to the displayed image.
Abstract:
The present embodiments relate to methods of making a toner composition. More specifically, the present embodiments relate to methods of including a functional material into a toner composition.
Abstract:
The presently disclosed embodiments relate generally to image forming systems comprising imaging apparatus members and toner compositions. More specifically, the present embodiments relate to an improved BCR xerographic system comprising (1) a cleaning blade comprising a material having a certain Share A Hardness; (2) a photoreceptor having a surface with a specified Young's Modulus and; and (3) a toner lubricant additive. The combined system demonstrates a significant increase an overall service life of the system.
Abstract:
A method and apparatus for displaying a reflective image in response to light emitted from an emissive display is disclosed. An apparatus includes an emissive display, a processor in communication with the emissive display, and an electronic cover proximate to the emissive display. The electronic cover includes a passive display layer having a plurality of passive display elements and a photosensitive layer responsive to emitted light from the emissive display. A method includes forming an emitted light image on the emissive display and exposing the photoconductor layer of the electronic cover to an emitted light image, causing the plurality of passive display elements to form a reflective image on the passive display layer so that the reflective image corresponds to the displayed image.
Abstract:
An electrochemical device is described, including a first electrochemical cell, a second electrochemical cell, connected in series to the first electrochemical cell, and a biodegradable conductive adhesive may include a conductive additive and a copolymer including at least two polycaprolactone chains attached to a polymeric center block, where the polymeric center block may include polyvinyl alcohol, disposed between the first electrochemical cell and the second electrochemical cell. A biodegradable conductive adhesive includes a hydrogel which may include a copolymer having at least two polycaprolactone chains attached to a polymeric center block, where the polymeric center block may include polyvinyl alcohol. Implementations of the biodegradable conductive adhesive may include a conductive additive or a salt. The biodegradable adhesive can include a dried hydrogel, where the hydrogel is biodegradable.
Abstract:
An electrochemical device is disclosed. The electrochemical device includes an anode and a cathode, and a cured electrolyte composition disposed between the anode and the cathode, where at least a portion of the electrolyte composition interpenetrates at least a portion of both the anode and the cathode. A stacked geometry electrochemical device is disclosed. The stacked geometry electrochemical device includes a first electrode and a second electrode, and a cured electrolyte composition defining a top surface in contact with the first electrode, a bottom surface in contact with the second electrode, and a peripheral edge not in contact with the first electrode and the second electrode. The device also includes a mold wall disposed at the peripheral edge surrounding and contacting the cured electrolyte composition, where at least a portion of the mold wall is transmissible to curing radiation. A method of producing an electrolyte layer of an electrochemical device is also disclosed.
Abstract:
An electrochemical device is disclosed, including a first substrate layer. The electrochemical device also includes an anode disposed upon the first substrate layer. The device also includes a second substrate layer. The electrochemical device also includes a cathode disposed upon the second substrate layer, and an electrolyte composition disposed between and in contact with the anode and the cathode. The electrochemical device also includes a sealing layer which may include a 3D-printed sealing layer composition disposed between the first substrate layer and the second substrate layer. A 3D-printed sealing layer and a method of producing a sealing layer is disclosed.
Abstract:
An example composition is disclosed. For example, the composition includes a ultra-violet (UV) curable mixture of water, an acid, a phosphine oxide with one or more photoinitiators, a water miscible polymer, a salt, and a neutralizing agent. The composition can be used to form an electrolyte layer that can be cured in the presence of air when printing the thin-film battery.