摘要:
In a center mechanism of a tire vulcanizer of the present invention, in order to improve working efficiency and lower total height, after a green tire is vulcanized and patterned and becomes a vulcanized tire, a bladder well is lifted from a bottom position where a lower bead ring is positioned on a lower mold and a bladder is installed in the green tire to a top position where the lower bead ring is positioned above the lower mold and an upper clamp, and the upper clamp, a lower clamp, and the bladder are placed in the bladder well, while heights of the upper clamp and the lower clamp are fixed.
摘要:
It is an object of the present invention to prevent or suppress the occurrence of a temperature difference between upper and lower portions of a green tire in a vulcanizing process carried out by a tire vulcanizing machine 1 and thereby stabilize the tire quality. The tire vulcanizing machine 1 comprises a tire vulcanizing bladder 20 disposed inside a green tire 4, a jet section 90 for jetting a heating/pressurizing medium to the interior of the bladder 20, a medium supply path for supplying the heating/pressurizing medium to the jet section 90, and a holding section 14 for holding an edge portion of the bladder 20, the edge portion being located on the side close to the medium supply path. Further, there are disposed heat insulators 7, 11, 8 and 6 so as to suppress the transfer of heat from the heating/pressurizing medium jetted from the jet section 90, to a lower edge portion of the green tire 4.
摘要:
A tire vulcanizing apparatus and a tire vulcanizing method, by which the pressure and temperature of a heating and pressurizing medium to be supplied to the internal space of a raw tire can be controlled without the condition of pressure being affected by the condition of temperature. The tire vulcanizing apparatus has: a medium path, connected to an internal space of a raw tire, for passing a heating and pressurizing medium; a pressure sensor, provided in the medium path, for measuring a pressure of the heating and pressurizing medium; a pressure control valve for controlling a pressure of the heating and pressurizing medium passing through the medium path on the basis of a signal from the pressure sensor; a temperature sensor, provided in the medium path, for measuring a temperature of the heating and pressurizing medium; and a heating unit for controlling the temperature of the heating and pressurizing medium passing through the medium path on the basis of a signal from the temperature sensor, wherein the pressure control valve and the heating unit control the pressure and temperature of the heating and pressurizing medium supplied from the medium path to the internal space of the raw tire respectively and independently.
摘要:
Provided is a tire testing machine capable of measuring a force generated in a tire with high precision. The tire testing machine includes a spindle shaft (20) for holding a tire (T), a housing (22) for rotatably supporting the spindle shaft (20) through a rolling bearing (25), a running device (10) having a surface rotated by rotational driving and imparting a rotational force to a tire contacting the surface, and a measurement device (4) which is provided in the housing (22) and measures a force and moment generated in the spindle shaft (20) when the tire (T) is running. Furthermore, the tire testing machine includes a torque canceller (5) for preventing the spindle shaft (20) from such an impact that rotational friction torque (My1) generated by rotational friction, which is received by the spindle shaft (20) in the housing when the spindle shaft (20) rotates, is imparted onto the shaft (20). The torque canceller (5) is equipped with a motor (30) for the spindle shaft, which imparts a torque for cancelling the impact of the rotational friction torque (My1) to the spindle shaft (20).
摘要:
The present invention provides a heating unit capable of easily and inexpensively adjusting total impedance based on tire mold size so that a power source can be used at a high power factor, and a tire heating apparatus using the same. A ferromagnetic metallic member 10a heats a tire mold M1 by heat conduction. An induction heating coil C1 is disposed on the side of the ferromagnetic metallic member 10a opposite the tire mold M1 to induction-heat the ferromagnetic metallic member 10a by generating magnetic field lines. A nonmagnetic conductor 30a is disposed on the side of the induction heating coil C1 opposite the ferromagnetic metallic member 10a to shield the magnetic field lines generated by the induction heating coil C1. A heating unit 100a including these elements heats the tire mold M1 storing a tire. A relative positional relationship among the nonmagnetic conductor 30a, the induction heating coil C1 and the ferromagnetic metallic member 10a is set by first spacers 71a and 72a and second spacers 21a to 23a.
摘要:
A bladder for a vulcanizer includes, as a constituent member, a low elongation material with stable properties at vulcanization temperatures. During a vulcanization-molding process, the bladder is pressed against the inner surface of a green tire using a pressurized medium. The pressurized medium can be at vulcanization temperatures. The bladder has substantially the same shape as the inner wall surface of the tire that is formed using the bladder. As a result, irregularities in the shape of the inner wall surface of a tire rarely occur, and the frequency of exchange of bladders can be reduced. The vulcanizer bladder can include a conductive material or a magnetic material, both of which can be heated by using an induction heating coil. The use of both heat from the pressurized medium and heat generated in the bladder to vulcanize a green tire can shorten the period of time required for vulcanizing-molding.
摘要:
A bladder bladderless-type dual-purpose tire vulcanizer wherein a lower center mechanism for the bladder type and a lower center mechanism for the bladderless type are interchangeably mounted on a lower platen which supports a lower half of a mold. An upper center mechanism for the bladderless type is vertically movably mounted, between an operating position and an upper waiting position, on an upper plate which supports an upper half of the mold. An upper bead ring for the bladder type and an upper bead ring for the bladderless type are interchangeably mounted on the upper half of the mold. Furthermore the lower center mechanism is provided with a lower bead ring, and upper and lower domes for enclosing and clamping the upper and lower platens.
摘要:
A mold clamp mechanism for a tire press with upper and lower molds, the clamp mechanism including a plurality of rod locking holes formed around the press center of the upper and/or lower mold; a corresponding plurality of clamp rods vertically received in rod receptacle holes in a fixed mold support structure, each clamp rod having a T-shaped head portion protrudable into a locking hole in the mold and lockable therein when the clamp rod is turned a 90 degree angle; a drive cylinder having rod operating arms connected to the piston rod thereof for movements toward and away from the clamp rod; rod rotating members mounted on the clamp rod and on one of the rod operating arms and engageable with each other when the piston rod is advanced toward the clamp rod to turn the same a 90 degree angle; and rod pull members mounted on the clamp rod and the rod operating arms and engageable with each other when the piston rod is further advanced toward the clamp rod after a 90 degree angle of rotation so as to clamp the mold to the fixed mold support structure.
摘要:
The present invention provides a heating unit capable of easily and inexpensively adjusting total impedance based on tire mold size so that a power source can be used at a high power factor, and a tire heating apparatus using the same. A ferromagnetic metallic member 10a heats a tire mold M1 by heat conduction. An induction heating coil C1 is disposed on the side of the ferromagnetic metallic member 10a opposite the tire mold M1 to induction-heat the ferromagnetic metallic member 10a by generating magnetic field lines. A nonmagnetic conductor 30a is disposed on the side of the induction heating coil C1 opposite the ferromagnetic metallic member 10a to shield the magnetic field lines generated by the induction heating coil C1. A heating unit 100a including these elements heats the tire mold M1 storing a tire. A relative positional relationship among the nonmagnetic conductor 30a, the induction heating coil C1 and the ferromagnetic metallic member 10a is set by first spacers 71a and 72a and second spacers 21a to 23a.
摘要:
A tire vulcanizing method reduces consumption energy and increases productivity of vulcanization. This method involves supplying an inert gas to an internal space of the tire via a supply pipe, discharging the gas from the internal space via a return pipe, and supplying the gas from the return pipe to the supply pipe by a rotation type circulation device. A heating device heats the circulated gas. An internal outlet gas temperature sensor detects a temperature of the gas in the return pipe. A controller decreases a rotating speed of the circulation device when the return pipe gas temperature is a rotating speed decrease temperature or more.