Abstract:
A signal converting circuit includes: a first switching circuit; a second switching circuit; and a first balance-unbalance circuit (Balun) having a first signal terminal coupled to an antenna, a second signal terminal coupled to the first switching circuit, and a third signal terminal coupled to the second switching circuit; wherein when the first balance-unbalance circuit operates in a first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a first signal processing circuit, and when the first balance-unbalance circuit does not operate in the first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a reference voltage.
Abstract:
An amplifier includes a transformer and a first stage gain circuit. The transformer includes a primary coil and a secondary coil. The primary coil is utilized for receiving an input signal. The first stage gain circuit has a first input port, which is coupled to the primary coil. The first stage gain circuit is utilized for gaining the input signal so as to generate a first output.
Abstract:
An operating circuit applied to a backlight is provided, where the backlight includes a plurality of lighting elements, and the operating circuit includes a plurality of current control circuits, a plurality of switches, a minimum voltage selector, a supply voltage generating circuit and a control unit. The current control circuits are coupled to the lighting elements via a plurality of nodes, respectively. The switches are coupled to the nodes, respectively. The minimum voltage selector is utilized for receiving at least a portion of voltages of the plurality of nodes, and selecting a minimum voltage among the received voltages. The supply voltage generating circuit is utilized for generating a supply voltage of the lighting elements according to the minimum voltage. For each of the switches, the control unit determines an on/off state of the switch by determining whether the corresponding lighting element is an open circuit or not.
Abstract:
A voltage conversion apparatus includes a DC-to-DC conversion circuit, a sensing circuit, and a compensation circuit. The voltage conversion apparatus is capable of adaptively adjusting the system bandwidth according to the load. The system bandwidth is increased to make the converted voltage responding to the load rapidly when the voltage conversion apparatus is operated at a transient state; and the system bandwidth is decreased to increase the system stability when the voltage conversion circuit is operated at a steady state.
Abstract:
An operating circuit applied to a backlight includes at least one current control circuit, where the current control circuit includes a transistor, an operational amplifier and a switch module. The transistor has a gate, a first electrode and a second electrode, where the first electrode is coupled to a lighting element, and the second electrode is coupled to a resistor. The operational amplifier has positive and negative input terminals, and positive and negative output terminals. The switch module switches a connection relationship between the positive input terminal, the negative input terminal, the reference voltage and the second electrode of the transistor, and switches a connection relationship between the positive output terminal, the negative output terminal and the gate of the transistor to make the close loop form a negative feedback, and the current of the lighting element not influenced by an offset voltage of the operational amplifier.
Abstract:
An operating circuit applied to a backlight is provided, where the backlight includes a plurality of lighting elements, and the operating circuit includes a plurality of current control circuits, a plurality of switches, a minimum voltage selector, a supply voltage generating circuit and a control unit. The current control circuits are coupled to the lighting elements via a plurality of nodes, respectively. The switches are coupled to the nodes, respectively. The minimum voltage selector is utilized for receiving at least a portion of voltages of the plurality of nodes, and selecting a minimum voltage among the received voltages. The supply voltage generating circuit is utilized for generating a supply voltage of the lighting elements according to the minimum voltage. For each of the switches, the control unit determines an on/off state of the switch by determining whether the corresponding lighting element is an open circuit or not.
Abstract:
A mixer includes a transformer and a mixing circuit. The transformer is employed for receiving an input signal to generate a differential output. The mixing circuit is coupled to the transformer, and employed for mixing the differential output with N oscillating signals having different phases to generate a plurality of mixed output signals, wherein N is greater than 2.
Abstract:
An adjusting method for reducing local oscillation leakage or I/Q mismatch in a receiver includes the steps of: (a) detecting a current extent of local oscillation leakage or I/Q mismatch; (b) determining if an adjusting direction is correct with reference to the current extent of local oscillation leakage or I/Q mismatch thus detected, maintaining the adjusting direction if correct, and reversing the adjusting direction upon determining that the adjusting direction is incorrect; and (c) adjusting a control signal according to the adjusting direction.
Abstract:
A clock generator is provided, capable of automatically adjusting an output clock when process, voltage, or temperature variation occurs. The clock generator includes a current generator, for generating a first current and a second current according to a bias signal, an oscillator, coupled to the current generator, for generating a clock signal according to the first current, a frequency detector, coupled to the oscillator, for generating a control signal according to the clock signal and a reference signal, and a bias voltage adjuster, coupled to the current generator and the frequency detector, for adjusting the bias signal according to the control signal. When the signal frequency of the clock signal changes, the bias signal corresponds to the bias voltage adjuster, to adjust the first current and the second current.
Abstract:
An adjusting method for reducing local oscillation leakage or I/Q mismatch in a receiver includes the steps of: (a) detecting a current extent of local oscillation leakage or I/Q mismatch; (b) determining if an adjusting direction is correct with reference to the current extent of local oscillation leakage or I/Q mismatch thus detected, maintaining the adjusting direction if correct, and reversing the adjusting direction upon determining that the adjusting direction is incorrect; and (c) adjusting a control signal according to the adjusting direction.