摘要:
An internal address generating circuit sequentially generates internal addresses in the burst read operation, with an external address being set as an initial value. A memory core has plural memory cells and sequentially outputs, in response to activation of a column selection signal, data read from the memory cells corresponding to the internal addresses in the burst read operation. In the burst read operation, a column control circuit in a memory core control circuit repeats activation of the column selection signal for a certain period during an activation period of an external control signal and forcibly deactivates the column selection signal in synchronization with deactivation of the external control signal. In the burst read operation, an operation state control circuit in the memory core control circuit deactivates an operation state control signal after a predetermined time has elapsed from the deactivation of the external control signal.
摘要:
A semiconductor memory device, in which a burst operation is performed using a memory core, has a read/write trigger signal generating circuit and a read/write signal generating circuit. The read/write trigger signal generating circuit generates a read/write signal request from a predetermined timing signal during the burst operation. The read/write signal generating circuit receives an output signal from the read/write trigger signal generating circuit and outputs a read/write signal after a core operation just prior to receipt of the output signal is complete and the subsequent activation of a row side is complete.
摘要:
A memory circuit has: a real cell array; a parity generating circuit for generating a parity bit from data of the real cell array; a parity cell array; a refresh control circuit, which sequentially refreshes the real cell array, and when an internal refresh request and a read request coincide, prioritizes a refresh operation; a data recovery section, which, in accordance with the parity bit read out from the parity cell array, recovers data read out from the real cell array; and an output circuit for outputting data from the real cell array. Further, the memory circuit has a test control circuit, which, at a first test mode, prohibits a refresh operation for the real cell array to output data read out from the real cell array, and, at a second test mode, controls the output circuit so as to output data read out from the parity cell array.
摘要:
On producing a lubricant which is used in making a lubrication layer included in a magnetic disk from the lubricant, a phosphorus-containing compound is removed from a raw-material lubricant including the phosphorus-containing compound to produce the lubricant. The magnetic disk includes a substrate on which at least a magnetic layer, a protection layer, and the lubrication layer formed by the use of the lubricant are successively formed.
摘要:
A magnetic recording disk having a substrate, a magnetic layer formed on the substrate, a protective layer formed on the magnetic layer and a lubricant layer formed on the protective layer, the lubricant layer containing a perfluoropolyether compound having an end moiety containing a phosphazene ring and a perfluoropolyether compound having an end moiety containing a hydroxyl group, or the lubricant layer containing a perfluoropolyether compound having an end moiety containing a hydroxyl group on the protective layer side and a perfluoropolyether compound having an end moiety containing a phosphazene ring on the other surface side, and a process for manufacturing each of these magnetic recording disks.
摘要:
A semiconductor memory device includes isolation circuits disconnecting cell arrays from sense amplifiers, and isolation signal generating circuits generating isolation signals that control the isolation circuits. The isolation signal generating circuits are hierarchically divided into main isolation signal generating circuits and sub isolation signal generating circuits. The sub isolation signal generating circuits generate sub isolation signals having a first potential on a high-potential side. The main isolation signal generating circuits generate main isolation signals having a second potential on the high-potential side, the second potential being lower than the first potential.