Abstract:
A method and an apparatus for single-image-based rain streak removal are introduced herein. In this method and apparatus, an original image is decomposed into a high frequency part and a low frequency part, and the high frequency image is then decomposed into a rain part and a non-rain part. The non-rain high frequency image and the original low frequency image are used to produce a non-rain image.
Abstract:
A warning method and system for detecting lane-changing condition of rear-approaching vehicles are disclosed, in which the method comprises the steps of: detecting rear-view images of an ego-vehicle so as to be used for defining three regions of interest (ROI) corresponding respectively to a lane to the left of the ego-vehicle, a lane to the right of the ego-vehicle, and a lane where the ego-vehicle is travelling thereon; detecting whether there is any direction light that is flashing to be used as basis for determining whether there is any vehicle approaching from the rear that is expected to be a potential threat to the ego-vehicle; and if so, issuing an alarm signal to the driver of the ego-vehicle for reminding the same to aware the distance between the ego-vehicle and the rear-approaching vehicle. Thereby, the driver's road environment awareness is enhanced and consequently the safety of driving can be improved.
Abstract:
A light emitting diode lamp includes a housing having a first side mounted with a conductive connecting head, and a second side opposite to the first side. The second side of the housing has a first mounting surface, and a tapered protrusion projecting outwardly from the first mounting surface and having at least one inclined second mounting face inclined with respect to the first mounting surface. A lighting unit includes a plurality of first light emitting diodes mounted on the first mounting surface of the housing, and a plurality of second light emitting diodes mounted on the second mounting face of the housing. A driving unit is disposed in the housing and is coupled to the lighting unit and the conductive connecting head for activating the lighting unit. A transparent cap body is mounted on the second side of the housing for covering the lighting unit.
Abstract:
A heat sink includes a first array of fins defining a plurality of first channels therebetween, a second array of fins disposed at opposite sides of the first array of fins, and a plurality of grooves extending through the first array of fins and the second array of fins. The second array of fins defines a plurality of second channels therebetween. The grooves are intersected with the first channels and the second channels. A bottom extremity of each groove has a curved shape facing upwardly and laterally. A portion of an airflow generated by a fan mounted on a top of the heat sink flows laterally and downwardly through the grooves to leave the heat sink.
Abstract:
A heat dissipation device includes a retention module, a heat sink, a locking plate and a clip rotatably connecting with the retention module. The retention module includes an opening in a center thereof. The heat sink includes a heat conducting body and plurality of fins radially extending from the heat conducting body. The heat conducting body has a bottom portion received in the opening of the retention module. The locking plate engages with the bottom portion of the heat conducting body of the heat sink. The locking plate has a first portion abutting a bottom of the retention module, and a second portion opposite to the first portion. The second portion is pressed by a pressing portion of the clip when the heat dissipation device is at a locked position.
Abstract:
A CPU casing structure includes a casing body having a rear wall on which a side wall is mounted to define an open front side for receiving a nonpackaged a CPU therein. A heat dissipator having a base positionable over and in physical contact engagement with the CPU to provide heat transfer therebetween is releasably secured to the front opening of the casing body by means of at least one clip so as to substantially cover the front opening and thus house the circuit board and the CPU therein. The casing body has at least one clip anchoring members formed on the top edge thereof. The clip have a central section selectively postionable on the base of the heat dissipator and a fixed, but preferably resilient, end extension extending through holes formed on the casing body, the circuit board and the heat dissipator. The end extension has a bending on the free end thereof and the bending is formed as an acute angle to be received within a sloped cavity having an inclination of substantially the same angle formed on the casing body. The clips also have a movable extension defined by a hinged tab having a slot engageable with the respective anchoring member to secure the clips and thus fix the heat dissipator to the casing body together.
Abstract:
A lighting device includes a light fixture, a semiconductor light source and a gas-discharge light source mounted in the light fixture, and a controller disposed in the light fixture and connected electrically to the semiconductor light source and the gas-discharge light source. The controller is operable to control activation and deactivation of the semiconductor light source and the gas-discharge light source. Heat generated during operation of the semiconductor light source may increase the ambient temperature in the light fixture such that optimum performance of the gas-discharge light source may be ensured.
Abstract:
A lamp device includes: a lamp unit mounted in a lamp housing; and a circuit unit disposed in the lamp housing for activating the lamp unit to emit light when receiving an external voltage through opposite connecting ports mounted on the lamp housing. The lamp unit includes two cold cathode fluorescent lamps (CCFLs) connected in series. Each CCFL includes a lamp tube that has a first tube segment connected to a first electrode portion and extending in a first direction, a second tube segment connected to a second electrode portion and extending in a second direction transverse to the first direction, and a curved third tube segment interconnecting the first and second tube segments. For each CCFL, a ratio of a length of the lamp tube in the second direction to a length of the same in the first direction is less than 25%.
Abstract:
A liquid cooling device (1) includes a base (2) enclosing working fluid therein and absorbing heat from a heat-generating electronic component, a heat sink (10) fluidically connecting with the base, and a pump (3) driving the working fluid to circulate between the base and the heat sink. The heat sink has closed top and bottom ends, and includes an outer tube (100) and an inner tube (30) disposed in the outer tube. First and second receiving chambers (34, 14) are respectively formed in the inner tube and between an inner surface of the outer tube and an outer surface of the inner tube for receiving the working fluid therein. The first receiving chamber communicates with the second receiving chamber at an end thereof so that the working fluid flows from the first receiving chamber to the second receiving chamber.
Abstract:
A heat dissipation device includes a retention module, a heat sink, a locking plate and a clip rotatably connecting with the retention module. The retention module includes an opening in a center thereof. The heat sink includes a heat conducting body and plurality of fins radially extending from the heat conducting body. The heat conducting body has a bottom portion received in the opening of the retention module. The locking plate engages with the bottom portion of the heat conducting body of the heat sink. The locking plate has a first portion abutting a bottom of the retention module, and a second portion opposite to the first portion. The second portion is pressed by a pressing portion of the clip when the heat dissipation device is at a locked position.