Abstract:
In general terms the present invention includes light emitting polymeric materials and light emitting devices made therefrom. The present invention also includes light emitting devices incorporating light emitting polymeric materials of the present invention. In general terms, such devices comprise: (a) a substantially transparent cathode comprising a conducting material having a first work function value; the cathode in contact with (b) an electron transporting/hole transporting polymer having an electron affinity value and ionization value; the electron transporting polymer in contact with (c) an anode comprising a conducting material having a second work function value; and the first work function value and the electron affinity being such as to allow the flow of electrons to flow into the electron transporting/hole transporting polymer, and the second work function value and the ionization value being such as to allow a flow of holes from the anode to the electron transporting/hole transporting polymer, so as to cause an electroluminescent emission from the device. Such devices may be bilayer or multilayer devices, in accordance with arrangements known in the art. Likewise, the source of electrical current may be from any appropriate source having the electrical characteristics sufficient to and appropriate for the desired device make-up and application.
Abstract:
Compositions and methods for treating textile substrates to obtain superior liquid repellent properties are disclosed. Durable microscopic surface structures imparted to the fibrous substrate allow liquids to bead up and roll off of its surface. Mechanical abrasion or sanding techniques may be used to create the microscopic surface structures on the surface of a fibrous textile substrate, without substantially breaking fibers, followed by a chemical treatment using, for example, fluorocarbon-containing repellent compositions. Particles may be employed in combination with repellent compositions to achieve superior repellent properties. A property of the roughened surface fibers, the Roughness Factor, is used to characterize the microscopic surface structures on the treated textile surface. Treated textile substrates are disclosed which achieve superior water and oil repellency, even after multiple abrasion or laundering cycles.
Abstract:
A multi-layered fiber including a core, a first layer, and a second layer. The core has an exterior surface portion containing polypropylene. The first layer is disposed on at least a portion of the core and contains a first polymer. The first polymer contains a polymer having at least 70% α-olefin units and is characterized by a melting temperature lower than the melting temperature of the exterior surface portion of the core. The second layer is disposed on at least a portion of the first layer and contains a second polymer. The second polymer contains a co-polymer having at least 50% α-olefin units and is characterized by a number-average molecular weight of about 7,000 g/mol to 50,000 g/mol, a viscosity of between about 2,500 and 150,000 cP measured at 170° C., and a melting temperature lower than the melting temperature of the exterior surface portion of the core. The viscosity of the second polymer is not greater than about 10 percent of the viscosity of the first polymer measured at 170° C. Methods of forming the multi-layered fiber are also disclosed.
Abstract:
A flexible spike and ballistics panel having a strike surface and a rear surface. The panel contains a strike face grouping and a rear face grouping, where the normalized stiffness of each strike face layer is about 3 to 50 times greater than the normalized stiffness of each textile layer. The strike face grouping contains at least two strike face layers, each strike face layer having resin and high tenacity yarns, where the high tenacity yarns are in an amount of at least 50% by weight in each layer, where the high tenacity yarns have a tenacity of at least 5 grams per denier, and where the strike face grouping forms the strike surface of the panel. The rear face grouping contains at least ten layers of a spike resistant textile layer, each textile layer having a plurality of interwoven yarns or fibers having a tenacity of about 5 or more grams per denier, where at least one of the surfaces of the spike resistant textile layer contains about 10 wt. % or less, based on the total weight of the textile layer, of a coating comprising a plurality of particles having a diameter of about 20 μm or less.
Abstract:
A consolidated fibrous structure including a multiplicity of fibrous layers. The fibers of each fibrous layer contain a core, a first layer and a second layer. The core has an exterior surface portion containing polypropylene. The first layer is disposed on at least a portion of the core and contains a first polymer. The first polymer contains a polymer having at least 70% α-olefin units and is characterized by a melting temperature lower than the melting temperature of the exterior surface portion of the core. The second layer is disposed on at least a portion of the first layer and contains a second polymer. The second polymer contains a co-polymer having at least 50% α-olefin units and is characterized by a number-average molecular weight of about 7,000 g/mol to 50,000 g/mol, a viscosity of between about 2,500 and 150,000 cP measured at 170° C., and a melting temperature lower than the melting temperature of the exterior surface portion of the core. The viscosity of the second polymer is not greater than about 10 percent of the viscosity of the first polymer measured at 170° C. At least a portion of the second layers of the fibers in each fibrous layer are fused to at least a portion of other first or second layers of the fibers within the same fibrous layer, at least a portion of the second layers of the fibers of each fibrous layer are fused with at least a portion of the first or second layers of the fibers in an adjacent fibrous layer, and the stiffness of the consolidated fibrous structure is at least 1 N-m. A fibrous layer is also described.
Abstract:
A consolidated fibrous structure including a multiplicity of fibrous layers. The fibers of each fibrous layer contain a core and a skin layer. The core has an exterior surface portion containing polypropylene. The skin layer is disposed on at least a portion of the core and contains a first polymer and a second polymer. The first polymer contains a polymer having at least 70% α-olefin units and is characterized by a melting temperature lower than the melting temperature of the exterior surface portion of the core. The second polymer contains a co-polymer having at least 50% α-olefin units and is characterized by a number-average molecular weight of about 7,000 g/mol to 50,000 g/mol, a viscosity of between about 2,500 and 150,000 cP measured at 170° C., and a melting temperature lower than the melting temperature of the exterior surface portion of the core. The viscosity of the second polymer is not greater than about 10 percent of the viscosity of the first polymer measured at 170° C. At least a portion of the skin layers of the fibers in each fibrous layer are fused to at least a portion of other skin layers of fibers within the same fibrous layer, at least a portion of the skin layers of the fibers of each fibrous layer are fused with at least a portion of the skin layers of the fibers in an adjacent fibrous layer, and the stiffness of the consolidated fibrous structure is at least 1 N-m. A fibrous layer is also described.
Abstract:
This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.
Abstract:
This invention relates to textile substrates to which a finishing treatment has been applied during the manufacturing process. Such a finishing treatment provides improved water and/or oil repellency and stain and soil resistance. The finishing treatment generally includes a repellent agent, a stain release agent, and a particulate component. Other compounds may be added to the treatment, such as stain-blocking agents, crosslinking agents, coupling agents, antimicrobial agents, and pH adjusting agents. The components of the finishing treatment are generally applied to the textile substrate using an application process that results in layered structures on the surface of the treated substrate, which has been found to greatly improve the durability of the treatment. Such treated textile substrates thus exhibit excellent stain and soil resistance and water and/or oil repellency properties.
Abstract:
The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.
Abstract translation:本发明一般涉及依赖于衬底环境的有用的,自动适应的表面能特性的衬底。 当与目标基板表面接触时,这种表面能量特性为液体提供相对高的前进和后退接触角。 在约25℃的温度和大于约20mJ / m 2的表面能的情况下,基材表现出低至多约20毫焦耳每平方米(mJ / m 2)的低表面能量, SUP> 2 SUP>在约40℃的温度下或暴露于约40℃。更具体地说,本发明包括具有这种非常理想的独特的表面能改性性能的织物基材,并且具有洗涤耐久性的油和水 排斥性和脱色特性。 赋予基质的这种表面能改变的新型组合物和制剂也包括在本发明内,以及生产这种处理过的基材的方法。
Abstract:
A high temperature filter containing a membrane, a support substrate, and a porous adhesive layer. The porous adhesive layer is adjacent the inner surface of the membrane and the inner surface of the support substrate such that the membrane and the support substrate sandwich the porous adhesive layer. The porous adhesive layer comprises an adhesive having an adhesive operating temperature of at least about 450° F. The support substrate is a woven textile, a non-woven textile, a knit textile, or a film, and has a support operating temperature of at least about 500° F.