Abstract:
A transmission gearbox for a rotary-wing aircraft includes a main gearbox and a variable speed gearbox in meshing engagement with the main rotor gearbox. The variable speed gearbox permits at least two different RPMs for the main rotor system without disengaging the engine(s) or changing engine RPMs. The variable speed gearbox includes a clutch, preferably a multi-plate clutch, and a freewheel unit for each engine. A gear path drives the main gearbox in a “high rotor speed mode” when the clutch is engaged to drive the main rotor system at high rotor rpm for hover flight profile. A reduced gear path drives the main gearbox in a “low rotor speed mode” when the clutch is disengaged and power is transferred through the freewheel unit, to drive the main rotor system at lower rotor rpm for high speed flight. The variable speed gearbox may be configured for a tail drive system that operates at a continuous speed, a tail drive system that changes speed with the main rotor shaft or for no tail drive system.
Abstract:
A multi-path split torque gearbox system provides a multiple of three stage torque split power gear trains modules that each transmits torque from a high-speed engine to a main rotor shaft (36). The first stage bevel gear arrangement (30,32) provides a compact packaging arrangement that facilitates various engine mounting locations in all axes. At the second stage, quill shaft assemblies (40) provide equal load balance. At the third stage, each quill shaft assembly includes a multiple of pinion gears (48) in meshing engagement with the final output gear (28). Each torque split modules transfer the power from the high speed input shaft into a multiple of meshing engagements with the final output gear to provide significant torque transfer desired in a single rotor heavy lift rotary wing aircraft embodiment within a compact housing package.
Abstract:
A lubrication system includes an external pump system which pumps air out of the housing and develop negative pressure therein in response to a loss of lubrication condition. The negative pressure operates as an air lock to minimize or prevent lubricating oil loss from the housing while an internal lubrication system continues to distribute lubricating oil—which although now increasing in temperature—still operates to lubricate the gearbox components. For further ballistic tolerance, the housing is a compound housing that reduces or closes the penetration and further minimizes lubricating oil and negative pressure loss. The housing may be still further hardened by an armor layer.
Abstract:
A multi-path split torque gearbox system provides a multiple of three stage torque split power gear trains modules that each transmits torque from a high-speed engine to a main rotor shaft (36). The first stage bevel gear arrangement (30,32) provides a compact packaging arrangement that facilitates various engine mounting locations in all axes. At the second stage, quill shaft assemblies (40) provide equal load balance. At the third stage, each quill shaft assembly includes a multiple of pinion gears (48) in meshing engagement with the final output gear (28). Each torque split modules transfer the power from the high speed input shaft into a multiple of meshing engagements with the final output gear to provide significant torque transfer desired in a single rotor heavy lift rotary wing aircraft embodiment within a compact housing package.
Abstract:
A gearbox of a rotary-wing aircraft includes at least one variable speed system which optimizes the main rotor speed for different flight regimes such as a hover flight profile and a high speed cruise flight profile for any rotary wing aircraft while maintaining an independently variable tail rotor speed.
Abstract:
A gearbox of a rotary-wing aircraft includes at least one variable speed system which optimizes the main rotor speed for different flight regimes such as a hover flight profile and a high speed cruise flight profile for any rotary wing aircraft while maintaining an independently variable tail rotor speed.
Abstract:
A transmission gearbox for a rotary-wing aircraft includes a main gearbox and a variable speed gearbox in meshing engagement with the main rotor gearbox. The variable speed gearbox permits at least two different RPMs for the main rotor system without disengaging the engine(s) or changing engine RPMs. The variable speed gearbox includes a clutch, preferably a multi-plate clutch, and a freewheel unit for each engine. A gear path drives the main gearbox in a “high rotor speed mode” when the clutch is engaged to drive the main rotor system at high rotor rpm for hover flight profile. A reduced gear path drives the main gearbox in a “low rotor speed mode” when the clutch is disengaged and power is transferred through the freewheel unit, to drive the main rotor system at lower rotor rpm for high speed flight. The variable speed gearbox may be configured for a tail drive system that operates at a continuous speed, a tail drive system that changes speed with the main rotor shaft or for no tail drive system.
Abstract:
A split torque gearbox having multiple input shafts. Each input shaft is connected to two face gears. Each face gear is connected to two quill shafts, one is coaxially mounted and the second is not coaxially mounted. Of the two quill shafts, one is positioned on a first side of an output stage and a second quill shaft is located on a second side of the output stage and the quill shafts are connected thereto. The output stage is connected to a main shaft.
Abstract:
A powerplant system for a vehicle such as a hybrid UAV includes a miniature gas turbine engine and a gearbox assembly. The engine is mounted to the gearbox assembly through a support structure which provides for pivotal movement of the engine relative thereto. The input gear is engaged with two gears such that the pivoted engine arrangement permits the input gear to float until gear loads between the input gear and the first and second gear are balanced. Regardless of the gear teeth errors or gearbox shaft misalignments the input gear will float and split the torque between the two gears.
Abstract:
A spring clutch has an arbor, a spring, and a sleeve. The spring at least partially surrounds the arbor and has a first portion coupled to the arbor to confine relative rotation of the first portion and arbor about an axis. The sleeve at least partially surrounds the spring and cooperates with the spring. The cooperation is sufficient so that an initial relative rotation between the arbor and sleeve in a first direction about the axis tends to uncoil the spring and bias the spring into firmer engagement with the sleeve. The cooperation is sufficient such that relative rotation in an opposite direction tends not to uncoil the spring and maintains the clutch in a disengaged condition.