Abstract:
Cross-coupled low noise amplifier for cellular applications. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. In one embodiment, this design is particularly adaptable to cellular telephone applications. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A very high output impedance is provided by using two transistors (implemented in a triple well configuration) with resistive source degeneration. A higher than typical power supply voltage can be employed (if desired) to accommodate the voltage drops of the resistors and transistors.
Abstract:
Fully integrated compact cross-coupled low noise amplifier. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A differential 100Ω input impedance is provided by this design. A higher than typical power supply voltage can be employed (if desired) to accommodate one possible implementation that includes two parallel implemented resistors to ground.
Abstract:
Low flicker noise mixer and buffer. This design employs some native metal oxide semiconductor field-effect transistors (MOSFETs) (e.g., having no threshold voltage) within a passive mixer whose gates are driven using clock signals. These native MOSFETs maybe biased at one half of the power supply voltage to provide a lower noise figure. A cooperatively operating buffer employs appropriately places MOSFETs and resistors to ensure the desired gain. Relatively larger valued resistors can be employed to provide for higher voltage gain, and this can sometimes be accompanied with using a higher than typical power supply voltage. Source followers serve as output buffers and also ensure the required output DC voltage level as well. It is also noted that this design can be implemented using n-channel metal oxide semiconductor field-effect transistors (N-MOSFETs) of p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs).
Abstract:
Cross-coupled low noise amplifier for cellular applications. A circuitry implementation that includes two pairs of metal oxide semiconductor field-effect transistors (MOSFETs) (either N-type of P-type) operates as an LNA, which can be used within any of a wide variety of communication devices. In one embodiment, this design is particularly adaptable to cellular telephone applications. A majority of the elements are integrated within the design and need not be implemented off-chip, and this can provide for a reduction in area required by the circuitry. A very high output impedance is provided by using two transistors (implemented in a triple well configuration) with resistive source degeneration. A higher than typical power supply voltage can be employed (if desired) to accommodate the voltage drops of the resistors and transistors.
Abstract:
An embodiment of the present invention is a low noise amplifier using differential inductors. An input matching circuit having first and second differential inductors matches an input resistance at an input having input terminals. A differential amplifier circuit converts the input voltage a current. An output circuit provides an output voltage buffer with a low output impedance at an output having output terminals. A cascode circuit increases isolation between the input and the output terminals.
Abstract:
An embodiment of the present invention is a low noise amplifier using differential inductors. An input matching circuit having first and second differential inductors matches an input resistance at an input having input terminals. A differential amplifier circuit converts the input voltage a current. An output circuit provides an output voltage buffer with a low output impedance at an output having output terminals. A cascode circuit increases isolation between the input and the output terminals.
Abstract:
According to one embodiment, a radio frequency (RF) transceiver includes a local oscillator generator (LOGEN) circuit configured to receive an adaptive supply voltage. The LOGEN circuit is coupled to a variable power supply for providing the adaptive supply voltage. A process monitor for the LOGEN circuit is in communication with the variable power supply through a power supply programming module. As a result, the adaptive supply voltage can be adjusted according to data supplied by the process monitor. A method for adaptively powering a LOGEN circuit comprises providing power to an RF device, monitoring a process corner of said LOGEN circuit, determining a supply voltage corresponding to the process corner, and adjusting the supply voltage to adaptively power the LOGEN circuit.
Abstract:
Embodiments of the present invention provide DC biasing circuits. Embodiments employ an open loop scheme, instead of a closed loop scheme as used in conventional circuits. In addition, embodiments generate a DC bias voltage that is independent of temperature, process, and power supply variations. Further, embodiments require low amounts of power and silicon.
Abstract:
A method to provide a low-power clock signal or a low-noise clock signal is described herein. It is determined whether a low-power mode or a low-noise mode is in use. A voltage reference input of a low-dropout voltage regulator (LDO) is switched to a low-power voltage reference for low-power mode and to a low-noise voltage reference for low-noise mode. The LDO provides a constant voltage output to a crystal oscillator. A clock signal is generated using the crystal oscillator. The clock signal is limited using a low-power limiter to generate a low-power output clock signal and/or is limited using a low-noise limiter to generate a low-noise clock signal. The low-power output clock signal or the low-noise output clock signal is selected using a mux.
Abstract:
According to one embodiment, a radio frequency (RF) transceiver includes a local oscillator generator (LOGEN) circuit configured to receive an adaptive supply voltage. The LOGEN circuit is coupled to a variable power supply for providing the adaptive supply voltage. A process monitor for the LOGEN circuit is in communication with the variable power supply through a power supply programming module. As a result, the adaptive supply voltage can be adjusted according to data supplied by the process monitor. A method for adaptively powering a LOGEN circuit comprises providing power to an RF device, monitoring a process corner of said LOGEN circuit, determining a supply voltage corresponding to the process corner, and adjusting the supply voltage to adaptively power the LOGEN circuit.