Abstract:
A method for making a negative-working heat-sensitive lithographic printing plate precursor includes the steps pf: (i) providing a support having a hydrophilic surface or which is provided with a hydrophilic layer; and (ii) applying on the support a coating which includes a product DQ, wherein DQ is obtained by: the step of coating a solution or dispersion including a nucleophilic compound Q and a dye D selected from the list consisting of di- or tri-arylmethane dyes, cyanine dyes, styryl dyes, and merostyryl dyes; or by D and Q interact to form interaction product DQ, having a white light optical density which is lower that the white light optical density of dye D; and the interaction product DQ is capable of at least partially releasing a dye directly after exposure to infrared light or heat, therby forming a visible image in the coating.
Abstract:
A positive working heat-sensitive lithographic printing plate precursor is disclosed which comprises a support having a hydrophilic surface and a coating, provided on the hydrophilic surface, wherein the coating comprises a spacer particle comprising aluminum hydroxide or aluminum oxide and having an average particle size larger than 0.3 μm, for improving the scuff-mark resistance of the coating. Furthermore, the coating comprises an infrared light absorbing agent, an oleophilic resin soluble in an aqueous alkaline developer and a developer resistant means.
Abstract:
New divinylfluorene compounds according to one of formulae (II) or (III): a new synthetic route to divinylfluorene compounds; and the use of the new compounds as sensitizers, optical brighteners and electroluminescent materials.
Abstract:
A positive-working lithographic printing plate precursor is disclosed which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer a heat and/or light-sensitive coating including an infrared absorbing agent, said heat and/or light-sensitive coating comprising a first layer comprising a binder including a monomeric unit including a sulfonamide group; characterized in that the binder further comprises a monomeric unit including a phosphonic acid group or a salt thereof, and that the monomeric unit comprising the phosphonic acid group is present in an amount comprised between 2 mol % and 15 mol %.
Abstract:
A radiation curable composition comprising a curable compound, a photo-initiator and a co-initiator, characterized in that said co-initiator is a oligomer or polymer having a repeating unit, said repeating unit comprising at least two tertiary amines, and said polymer being prepared by the polycondensation of di- or oligofunctional Michael acceptors with mono- or oligofunctional aliphatic primary amines or with di- or oligofunctional aliphatic secondary amines or with a mixture thereof.
Abstract:
A curable jettable liquid for manufacturing a flexographic printing plate comprising at least one photo-initiator, at least one monofunctional monomer, at least 5 wt % of a polyfunctional monomer or oligomer and at least 5 wt % of a plasticizer both based on the total weight of the curable jettable liquid capable of realizing a layer after curing having an elongation at break of at least 5%, a storage modulus E′ smaller than 200 MPa at 30 Hz and a volumetric shrinkage smaller than 10%.
Abstract:
A printing process is disclosed for ink-jet printing a radiation curable image on a substrate (14). First a radiation curable liquid layer (12) is provided on at least a portion of the substrate (14). Radiation curable ink-jet ink droplets (10) are jetted into the radiation curable liquid layer (12) and the radiation curable liquid layer (12) containing the radiation curable ink-jet ink droplets (13) is then cured. The resolution of the radiation curable image is controlled by uniformly adjusting the thickness of the liquid layer (12) for the dotsize of the radiation curable ink-jet ink jetted onto the cured layer.
Abstract:
A polymer for a heat-sensitive lithographic printing plate precursor is disclosed wherein the polymer comprises a phenolic monomeric unit wherein the H atom of the hydroxy group of the phenyl group of the phenolic monomeric unit is replaced by a group comprising a N-imide group and wherein the substitution of the polymer increases the chemical resistance of the coating of the printing plate precursor.