Abstract:
A method is provided for identifying colors across illuminants using a processor configured by code executing therein, the method comprising capturing a sample image with an image recording device, the image including pixels representing a color sample under analysis and a color reference chart. The processor is also configured to execute comparing the color values of pixels representing the color reference chart of the sample image to the pixel values corresponding to a plurality of entries within a plurality of color reference datasets to determine the dataset representing the closest match of the illumination present at the time the sample image was captured. Using the identified illuminant, the color reference dataset having the closest illuminant is searched for the color under analysis.
Abstract:
In one embodiment, an apparatus for measuring a color of a non-solid colored sample includes an integrating sphere having a sensor port, a sample port, and a plurality of registration marks affixed to an interior surface of the integrating sphere, outside a periphery of the sample port, a camera positioned near the sensor port, and a plurality of filters positioned between the integrating sphere and camera. An optical axis of the camera extends from the camera, through at least one of the plurality of filters, through the sensor port, to the sample port.
Abstract:
An apparatus and method for providing a solution that enables technicians or other technical professionals to obtain accurate gloss, haze and DOI values for a reflecting sample due to the surface conditions of the sample. The apparatus and method allow for the generation of a data model of the surface of a sample using a sensor array designed to detect the divergence of a collimated beam of light reflected off the surface of the sample. The same principle enables technical professionals to obtain accurate haze and clarity values for a transparent or translucent sample that is trans-illuminated by light.
Abstract:
A method includes controlling an integrated camera of a mobile device to detect a plurality of fiducial markers displayed as part of a test pattern on a display surface of a color display device, wherein the test pattern is one of a plurality of test patterns, estimating a position of the integrated camera relative to the display surface, using the plurality of fiducial markers, augmenting a live image of the test pattern on a display of the mobile device with an overlay, controlling, in response to a position of the overlay being aligned on the display of the mobile device with the live image of the test pattern, the integrated camera to capture an image of the test pattern, and calculating an adjustment to a color setting of the color display device, wherein the adjustment is calculated using information extracted from the image.
Abstract:
In one example, a method includes controlling a gloss channel of a color measurement apparatus to measure a surface gloss of a color sample to generate a gloss value for the color sample, controlling a color channel of the color measurement apparatus to measure a reflectance spectrum of the color sample to generate a first plurality of reflectance values for the color sample under a first measurement geometry, and converting the first plurality of reflectance values to a second plurality of reflectance values representing the reflectance spectrum of the color sample under a second measurement geometry, different from the first measurement geometry, wherein the converting utilizes an adjustment that is a function of the gloss value.
Abstract:
In one or more implementations, the apparatus, systems and methods disclosed herein are directed to configuring a color measurement device to output color measurements that match the expected output of a different color measurement device. In a particular implementation, a method is provided for matching the color measurements made by a color measurement device to the color measurements made by a target color measurement device by implementing a single step color calibration and conversion process using an Artificial Neural Network (ANN). By way of non-limiting example, the raw counts from the color measurement device is converted to a specific color space, such as L*a*b, directly through an ANN. Such ANN is trained to ensure the output of the color measurement from the color measurement device will match with the output of the color measurement from a target color measurement device.
Abstract:
In accordance with one or more implementations of the apparatus, system and methods described, a sample measurement device is provided that is configured to measure the color of a sample. The sample measurement device includes at least one light source configured to illuminate the sample; at least one light sensor configured to output a signal in response to light emitted by light source and reflected off the sample being received by at least a portion of the light sensor; and a processor configured to receive the signal and calculate a color value for the sample, the processor configured to calculate the color value by at least adjusting the signal using a calibration factor.
Abstract:
A system including a processor and a memory configured to store code executed by the processor is provided. In one or more implementations, the processor is configured by the code to calibrate measurements made by color measurement devices. In one particular implementation, the processor receives a measurement dataset of one or more color values, for a sample obtained by a color measurement device. The processor is configured to convert the measurement dataset to a standard space measurement dataset using a standard space measurement model and calculate a color dataset based on the standard space measurement dataset using a color conversion model. The processor is further configured to output the calculated color dataset to at least one of a display, database or local memory store.
Abstract:
In one or more implementations, the apparatus, systems and methods disclosed herein are directed to configuring a color measurement device to output color measurements that match the expected output of a different color measurement device. In a particular implementation, a method is provided for matching the color measurements made by a color measurement device to the color measurements made by a target color measurement device by implementing a single step color calibration and conversion process using an Artificial Neural Network (ANN). By way of non-limiting example, the raw counts from the color measurement device is converted to a specific color space, such as L*a*b, directly through an ANN. Such ANN is trained to ensure the output of the color measurement from the color measurement device will match with the output of the color measurement from a target color measurement device.
Abstract:
In accordance with one or more implementations of the apparatus, system and methods described, a sample measurement device is provided that is configured to measure the color of a sample. The sample measurement device includes at least one light source configured to illuminate the sample; at least one light sensor configured to output a signal in response to light emitted by light source and reflected off the sample being received by at least a portion of the light sensor; and a processor configured to receive the signal and calculate a color value for the sample, the processor configured to calculate the color value by at least adjusting the signal using a calibration factor.