Abstract:
Various techniques are provided for hosting storage media devices using multi-port devices having a plurality of ports. For example, in one embodiment, a method of operating a multi-port device includes detecting whether a host device or a storage media device is connected to a first port of the multi-port device or a second port of the multi-port device. The method also includes, if the host device is connected to the first port, configuring the first port as a slave port and operating the multi-port device as a slave hosted by the host device. The method also includes, if the host device is connected to the second port and the storage media device is connected to the first port, configuring the first port as a host port and hosting the storage media device from the multi-port device.
Abstract:
A frequency synthesizer system may generate two intermediate clock signals, each intermediate clock signal having the same nominal frequency (fN), the same cycle pattern with deterministic jitter, and the same corresponding average frequency (fA). However, the cycle pattern in one intermediate clock signal may be a specified number (N) of cycles out of phase with respect to the cycle pattern in the other intermediate clock signal. The cycle pattern may recur every 2N cycles in each intermediate clock signal. The duration of each cycle in each of the two intermediate clock signals is defined by fN and the deterministic jitter in the cycle pattern. An output clock signal may be generated by phase interpolating by two (2) the two intermediate clock signals, and dividing the resulting phase interpolated clock signal by N. The resulting output clock signal has an accurate frequency commensurate with fA/N, and is free of deterministic jitter.
Abstract:
Various techniques are provided for bridging interfaces, such as different interfaces for use with a host device. In one example, a system includes an asynchronous first interface adapted to transmit and receive data to and from a host device in accordance with a first protocol. A synchronous second interface is adapted to transmit and receive data to and from a device external to the host device in accordance with a second protocol. A bridge controller is adapted to convert the data received from the host device from the first protocol to the second protocol for transmission to the external device. A clock and data recovery (CDR) block is adapted to recover a clock signal from the first interface to synchronize the data received from the host device. The second interface is adapted to synchronize the converted second protocol data transmitted to the external device using the recovered clock signal.
Abstract:
Various techniques are provided to detect a state of a communication signal. In one example, a method of detecting a state of a signal includes receiving a differential communication signal comprising a positive portion and a complementary negative portion. The method also includes filtering the positive portion of the communication signal through a first low pass filter to provide a filtered positive portion of the communication signal. The method also includes filtering the negative portion of the communication signal through a second low pass filter to provide a filtered negative portion of the communication signal. The method also includes comparing the filtered positive portion of the communication signal with an internal reference voltage. The method also includes comparing the filtered negative portion of the communication signal with the internal reference voltage. The method also includes generating a low frequency detect signal in response to the comparing operations to indicate whether the communication signal is in a low frequency state.
Abstract:
Various embodiments of a radio-frequency (RF) transmitter receiver circuit that utilizes an injection locked oscillator may allow for the introduction of a DC offset to correct the RF signal. The DC offset may be adjusted to eliminate (or minimize) even order harmonics to correct for RF effects. The DC offset correction may be performed around the injection locked oscillator to target even order terms.
Abstract:
Systems and methods are provided to permit indirect measurements of sample time errors using multiphase interpolator clocks generated from a local reference clock in clock recovery blocks of high speed data receivers. The multiphase interpolator clocks are adjusted to have substantially evenly spaced phase offsets within a data period of the local reference clock. A small frequency offset between the transmitter clock and the local reference clock causes transition edges of received data to drift slowly across the interpolated clocks. Differences in phase offsets between the interpolated clocks may be determined with high resolution by counting the number of data transitions occurring between pairs of interpolated clocks over a long period of time. Phase offsets are adjusted to make the data transition counts substantially the same for the interpolated clocks. Data recovery may then be facilitated by selecting an interpolated clock with a sampling edge that is closest to the center of a data period to sample the received data.
Abstract:
Systems and methods for a mass storage device attached to a host device use speculation about the host command likely to be received next from the host device based on a previously received command to improve throughput of accesses to the mass storage device. Host commands are used to speculatively produce commands for data storage devices of the mass storage device, such that host commands speculated as being likely next can be started during idle time of the data storage devices, based upon the probability that the speculation will be correct some of the time, and otherwise wasted idle time will be more efficiently used. Time taken by the host device to produce successive commands to the mass storage system is monitored, and future speculatively produced commands are parameterized to complete within the observed host time to produce new commands, making more efficient use of the data storage devices.
Abstract:
A data communication system and an associated network node implementation is disclosed that, in certain embodiments, uses single-channel bi-directional communication links between nodes to send frames of data. The network nodes can be connected together in a ring or daisy chain topology with data frames sent in alternating directions through the bi-directional links. Such networks initially configured in a physical ring topology can tolerate single point failures by automatically switching to a logical daisy chain topology.
Abstract:
Embodiments of the present disclosure provide a method and system for authenticating communication between a plurality of accessory devices or services and one or more media devices by using a single authentication processor. The method includes the steps of establishing a communication of a media device attached to an accessory device with an authentication processor through an authentication processor manager, authenticating the accessory device by the media device based on a digital certificate and a digital signature; and authenticating the media device by the accessory device based on verification of the digital certificate and the digital signature.
Abstract:
A port power switch (PPS) may be used for lead compensation in systems where power is provided to a connected device by a switch-mode power supply (SMPS). The PPS may be designed to co-operate with the SMPS, providing a mechanism for the feedback reference point of the SMPS to be automatically switched, in the event of system fault or some other condition that might result in the PPS entering an “OFF’ operating mode, from the application point of load (POL) to the voltage input pin of the PPS without loss of power path continuity. The switching mechanism and the PPS may be manufactured to reside on the same integrated circuit. The PPS may include a control block that generates a control signal to couple the feedback port of the SMPS to the POL under normal operation, and to the voltage input port of the PPS during a fault condition.