Abstract:
The present invention is directed to a golf ball having a center, an envelope layer, an intermediate layer and a cover, wherein the intermediate layer has a thickness less than 1.2 mm, the envelope layer has a hardness Hs of 60 or more, the intermediate layer has a hardness Hm from 40 to 60, and the cover has a hardness Hc less than 40 in Shore D hardness, and the hardness Hs, Hm and Hc satisfy a following mathematical expression: Hs>Hm>Hc, and the intermediate layer composition has a flexural modulus from 150 MPa to 450 MPa, a maximum loss factor (tan δ) between −20° C. and 0° C. of 0.08 or less, a rebound resilience of 55% or more.
Abstract:
A golf ball material composed of (A) an ionomer, (B) a resin composition which includes one or more selected from the group consisting of diene polymers, thermoplastic polymers and thermoset polymers, and (C) an acid group-bearing thermoplastic resin composition is prepared by melt-mixing components B and C so as to form a resin composition of components B and C, then melt-mixing this resin composition with component A while injecting water under pressure. The golf ball material has a good thermal stability, flow and processability, and can be used to produce high-performance golf balls endowed with durability, scuff resistance and optimal hardness without a loss of rebound.
Abstract:
A golf ball material composed of (A) an ionomer, (B) a resin composition which includes one or more selected from the group consisting of diene polymers, thermoplastic polymers and thermoset polymers, and (C) an acid group-bearing thermoplastic resin composition is prepared by melt-mixing components B and C so as to form a resin composition of components B and C, then melt-mixing this resin composition with component A while injecting water under pressure. The golf ball material has a good thermal stability, flow and processability, and can be used to produce high-performance golf balls endowed with durability, scuff resistance and optimal hardness without a loss of rebound.
Abstract:
The invention provides a golf ball composed of a core, an intermediate layer which encases the core, and a cover which encases the intermediate layer. The core has a diameter of 36 to 40 mm and a deflection of 3.5 to 4.2 mm, and the intermediate layer has a Shore D hardness of 45 to 55 and a thickness of 0.6 to 1.6 mm. The cover has a Shore D hardness of 63 to 66 and a thickness of 0.6 to 1.6. The ball as a whole has a deflection of 2.6 to 3.5 mm, and the intermediate layer and cover have a combined thickness of 1.8 to 2.8 mm. The ball has a hardness design such that the Shore D hardnesses of the ball components satisfy the relationship core center≦core surface≦intermediate layer≦cover, and the cover is made of a material composed primarily of a thermoplastic resin or a thermoplastic elastomer. The intermediate layer is made of a material that is a resin composition in which at least 90 mol % of the acid groups are neutralized. This combination of characteristics provides the golf ball with a sufficient spin rate-lowering effect, thus increasing the distance traveled, and also confers the ball with a good feel on impact and an excellent durability to cracking.
Abstract:
A golf ball having a core, an intermediate layer enclosing the core and a cover enclosing the intermediate layer is characterized in that the intermediate layer and cover are each made from an ionomer resin-containing thermoplastic resin. The golf ball is also characterized in that the core has a diameter of at least 36.7 mm but not more than 40.7 mm, the core has a deflection when subjected to a load of 100 kg of at least 3.5 but not more than 6.0 mm, the intermediate layer has a thickness of at least 0.50 mm but not more than 1.40 mm, the intermediate layer has a Shore D hardness of at least 40 but not more than 55, the cover has a thickness of at least 0.50 mm but not more than 1.40 mm, the cover has a Shore D hardness of at least 60 but not more than 70, the golf ball has a deflection when subjected to a load of 100 kg of at least 2.8 mm but not more than 4.5 mm, and the deflection by the core under 100 kg load minus the deflection by the golf ball under 100 kg load is less than 1.0 mm.
Abstract:
The present invention is directed to a golf ball having at least one layer, such as a center, a cover layer, or an intermediate layer, which is formed from a polymer composition comprising at least 25 wt %, based on the total polymeric weight of the polymer composition, of an acid polymer having acid groups, wherein at least 90% of the acid groups are neutralized. The polymer composition also comprises at least 10 wt %, based on the total polymeric weight of the polymer composition, of a non-fatty acid melt flow modifier selected from polyesters, polyacrylates, polyurethanes, polyethers, thermoplastic polyureas, and combinations thereof. The polymer composition is substantially free of fatty acids and their salts and has a melt flow index of from 0.5 g/10 min to 10.0 g/10 min.
Abstract:
An apparatus for making a golf ball is disclosed. The apparatus is a molding assembly for making a golf ball which includes a mold body that defines a molding cavity. The molding cavity is adapted to accommodate and preferably retain a golf ball core during a molding operation of one or more layers about the core. The molding assembly includes at least one material flow inlet, at least one material flow channel extending between and providing fluid communication with a material flow inlet and the molding cavity. At least one portion of the material flow channel has a plurality of bends and at least one branching intersection adapted to promote turbulence in a liquid flowing therethrough. A method of making a golf ball is also disclosed. A golf ball made from the disclosed molding apparatus and/or process is also disclosed.
Abstract:
In a multi-piece golf ball comprising a solid core, an intermediate layer, and a cover, the intermediate layer and/or the cover is formed of a heated mixture having a melt index of at least 1.0 dg/min and comprising (a) an olefin-carboxylic acid random copolymer and/or (d) a metal ion-neutralized olefin-carboxylic acid random copolymer and/or a metal ion-neutralized olefin-carboxylic acid-carboxylate random copolymer; (b) a fatty acid or derivative having a molecular weight of at least 280; and (c) a neutralizing basic inorganic metal compound. All expressed in Shore D hardness, the intermediate layer has a hardness of 40-63, the cover has a hardness of 45-68, and they satisfy the relationship: the hardness of solid core at its center≦the hardness of intermediate layer≦the hardness of cover.
Abstract:
In a golf ball having, in order, a core, an envelope layer, an intermediate layer and a cover, the following conditions are satisfied: (I) ball surface hardness>intermediate layer surface hardness>envelope layer surface hardness 0.05 mm, (IV) (intermediate layer thickness−envelope layer thickness)>0.05 mm, and (V) (Cs−C10)/(C10−Cc)>1.0 (where Cs denotes the JIS-C hardness at the core surface, C10 the JIS-C hardness at a position 10 mm from a center of the core, and Cc the JIS-C hardness at the core center). The ball provides an excellent flight performance when struck by the average golfer, a feel that is both soft and solid, and an excellent durability to repeated impact.
Abstract:
Golf ball comprising a first layer having a first spherical outer surface; a thin moisture vapor barrier layer disposed concentrically about the first spherical outer surface and having a thickness of less than about 0.010 inches; and a second layer disposed concentrically about a second spherical outer surface of the thin moisture vapor barrier layer. The thin moisture vapor barrier layer is formed from an ionomer composition consisting of a 1-50 percent aqueous mono-valent high acid ionomer dispersion, with the ionomer: having an acid level greater than 18%; having more than 45% of acid groups that are neutralized with a monovalent cation; and being formed from an acid copolymer having a starting melt index of greater than 180 g/10 min.@190° C. with a 2160 g load. The moisture vapor barrier layer has a moisture vapor transmission rate that is lower than that of at least one of the first layer and/or the second layer.