Abstract:
A pressure relief device (100) for an inflatable tire comprises a body (102) having a chamber (116) therein and pressure relief mechanism for releasing air when the air pressure in the chamber exceeds a first predetermined pressure level. A conduit (108; 208) inter-connects an air inlet (110; 210) with an air outlet (112; 212). The conduit (108; 208) is provided in a pin (104; 204) arranged to slide axially in a passageway (106) in the body, the pin (104; 204) extending from the air inlet (110; 210) to the air outlet (112; 212) and being slidable between a first position in which it cannot release a stem of the tire, and a second position, in which it can release the stem.
Abstract:
An audibly reporting and contemporaneous pressure-relief, automatic tire assembly is disclosed for use in interaction with preexisting valve core stems on a tire of other vessel or with conventional tire rim inflation holes. The assembly of the invention has a channeled valve body having a moving inside pin, and communication from within its channel to a sound board emission port having check-reed position groove at its other end. A pressure-sensitive arc-like mechanism is provided, fabricated to provide an inwardly closing force equivalent to a preselected pressure limit desired for a respective tire or air/fluid-pressured container. This mechanism is mounted in relation to the valve body and supported by a hollow and ported collar so that it seats and exerts closing force against an exposed portion of the check-reed which sits and can move within its position groove. When air or fluid pressure is provided to the valve body, in installed position, the back pressure from this exerts a corresponding force on the check-reed. When this back-pressure force, representing pressure in the tire/container exceeds the force exerted by the pressure-sensitive mechanism leaning on the check-reed, the check-reed moves within its groove allowing excess pressure above the limit to escape, and contemporaneously reporting an audible whistling sound generated by the sound board conditions created by escaping air in adjoining spaces of the check-reed, check-reed groove, and ported support collar in relation to the valve body.
Abstract:
A dual valve assembly with calibrated or adjustable spring loading that may be attached to a valve stem on a tire to allow slightly over pressuring the tire with air and which then automatically adjusts the pressure in the tire to match a spring loading calibration.
Abstract:
A safety valve replaces a tire valve. The valve includes a generally elongate hollow main body having an upper portion, a lower flex hose connector, a side tubular branch having a valve seat with a ball valve, an electronics housing having a battery, motor and a drive pin for the ball valve. The lower flex hose connector is adapted for connection to a flex hose or valve stem of the vehicle tire. The side branch branches from the main body and communicates with the hollow interior of the main body. The side branch has a plurality of air exit apertures at its periphery. The valve seat includes a base with an aperture therein through which the drive pin can extend through to engage the ball valve. The ball valve sits in the base and is biased in the valve seat via a spring to cover the aperture.
Abstract:
An improved deflator valve is described herein. The deflator valve has a main body with one or more ports, one or more vents, or port or vent slots for introducing air into or relieving pressure from within the main body in a vortex, circular flow. The deflator valve also includes a piston having an O-ring disposed around an outer circumference of the piston. The O-ring of the piston and the ports and vents are effective for reducing noise and deflation time and improving accuracy and ease of adjusting a pressure setting. The deflator valve can further include a dual or variable rate spring that can achieve an extensive destination pressure range. The deflator valve can also include a threadless lead in, fewer valve stem threads, or a lock chuck for enhanced valve stem attachment methods.
Abstract:
A wheel includes an inner wheel half defining a plurality of inner bolt apertures and having a mating surface. The wheel also includes an outer wheel half defining a plurality of outer bolt apertures and having an inner surface. The plurality of outer bolt apertures are configured to be aligned with the plurality of inner bolt apertures such that each of a plurality of bolts may be received by one of the plurality of outer bolt apertures and one of the plurality of inner bolt apertures, forming a seal between the mating surface and the inner surface in response to each of the plurality of bolts being tightened. In response to a predetermined number of bolts becoming loose, a first portion of the mating surface may separate from a second portion of the inner surface, breaking the seal.
Abstract:
A valve assembly configured for use with an inflatable product, such as a mattress, chair, pool, spa, float, or another suitable inflatable product. The valve assembly includes a first valve component that serves as an opening for inflation and/or deflation of the inflatable product, and a second valve component that serves as an opening for deflation or decompression of the inflatable product.
Abstract:
An air maintenance tire assembly includes a tire having a tire cavity bounded by first and second sidewalls extending to a tire tread region, air pump for generating pressurized air for maintaining air pressure within the tire cavity at a preset pressure level, the tire having an elongate valve stem projecting outward from the tire cavity and having an internal valve stem air passageway in communication with the tire cavity and operative to direct pressurized air into the cavity, and a valve housing disposed adjacent an outward end of the valve stem and operative to selectively open and close pressurized air flow from the valve stem internal passageway into the tire cavity.
Abstract:
An air maintenance tire assembly includes a tire having a tire cavity bounded by first and second sidewalls extending to a tire tread region, air pumping means for generating pressurized air for maintaining air pressure within the tire cavity at a preset pressure level, and a valve housing disposed adjacent an outward end of the valve stem and operative to selectively open and close pressurized air flow from the valve stem internal passageway into the tire cavity. The first sidewall has at least one bending region operatively bending within a rolling tire footprint and a sidewall groove defined by groove sidewalls positioned within the bending region of the first tire sidewall. The groove deforms segment by segment between a non-deformed state and a deformed, constricted state in response to the bending of the first sidewall bending region within the rolling tire footprint.