Abstract:
A gas turbine engine includes a heat exchanger, a diffuser case, a passageway and a nozzle assembly. The heat exchanger exchanges heat with a bleed airflow to provide a conditioned airflow. The diffuser case includes a plenum that receives the conditioned airflow. The passageway is fluidly connected between the heat exchanger and the diffuser case, and the conditioned airflow is communicated through the passageway and into the plenum. The nozzle assembly is in fluid communication with the plenum of the diffuser case to receive the conditioned airflow from the plenum.
Abstract:
A sealing arrangement has a turbine static structure with contact surfaces, a bearing compartment with contact surfaces, and a cavity between the turbine static structure and the bearing compartment. There are also two seals, wherein each seal is configured to contact the turbine static structure and the bearing compartment.
Abstract:
A gas turbine engine recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust inlet having a smaller cross-sectional area than that of the exhaust outlet, and a cross sectional area of each exhaust passage progressively increasing from the exhaust inlet to the exhaust outlet such as to diffuse the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and provide fluid flow communication between an air inlet and an air outlet designed to sealingly engage respective plenums of the gas turbine engine.
Abstract:
A thermal management system for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a heat exchanger and a valve that controls an amount of a first fluid that is communicated through the heat exchanger. A first sensor senses a first characteristic of a second fluid that is communicated through the heat exchanger to exchange heat with the first fluid and a second sensor senses a second characteristic of the second fluid. A positioning of the valve is based on at least one of the first characteristic and the second characteristic.
Abstract:
The invention relates generally to electrical power systems, including generating capacity of a gas turbine, and more specifically to pressurized air injection that is useful for providing additional electrical power during periods of peak electrical power demand from a gas turbine system power plant, as well as to inlet heating to allow increased engine turn down during periods of reduced electrical demand.
Abstract:
The invention relates generally to electrical power systems, including generating capacity of a gas turbine, and more specifically to pressurized air injection that is useful for providing additional electrical power during periods of peak electrical power demand from a gas turbine system power plant, as well as to inlet heating to allow increased engine turn down during periods of reduced electrical demand.
Abstract:
The invention is directed to a fluid distributing apparatus comprising a fixed part and a rotating part. The fixed part is provided with at least one inlet channel and at least one outlet channel and wherein each inlet and outlet channel has a facing opening facing the rotating part. The rotating part is rotatably positioned relative to the fixed part such that the rotating part can have multiple rotational positions relative to the fixed part, wherein the rotating part is provided with at least a connecting channel having an inlet and outlet opening in the rotating part. The inlet and outlet opening of at least one connecting channel in the rotating part aligns with the facing openings of at least one inlet and outlet channel in the fixed part in at least one rotational position and not align in another position.
Abstract:
In one embodiment, a system includes a turbine combustor of a turbine system with the turbine combustor at least partially enclosed within a compressor discharge casing. The turbine system also includes an exhaust gas recovery system that includes an exhaust gas recirculation duct. The exhaust gas recirculation duct is configured to recirculate exhaust gas from a downstream end of the turbine combustor to an upstream end of the turbine combustor. This exhaust gas recirculation duct is entirely enclosed within the compressor discharge casing.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of an electrical grid. Improvements in power augmentation and engine operation include systems and methods for providing rapid response given a change in electrical grid.
Abstract:
A power generation system includes a compression unit which compresses a gas, a storage which stores the compressed gas output from the compression unit, a first expansion unit which generates first power and outputs a first exhaust gas, a heating unit which heats at least the stored gas output from the storage, a second expansion unit which generates second power and outputs a second exhaust gas, a first regenerator which performs a first heat exchange between the second exhaust gas and the stored gas output from the storage, to generate a first heat exchange gas used to generate the first power and a first regenerator gas, and a second regenerator which performs a second heat exchange between the first exhaust gas and the first regenerator gas to generate a second heat exchange gas used to generate the second power after heated at the heating unit.