Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
A head assembly 52, 152 for a pulverized coal nozzle includes removeable wear-resistant inserts having vanes 54, 151, 153. The vanes 54, 151, 153 may be flat or curved to direct a stream of air and pulverized solid fuel particles from the inlet port 60, 160 toward the outlet port 62, 162. The curved vanes 151, 153 curve in two dimensions to evenly distribute the stream of air and pulverized solid fuel away from the outer surfaces reducing wear and corrosion. The pipe elbow has a removable cover 70, 170 that allows for easy access. The vanes are attached to a wear-resistant replaceable liner 185 thus allowing them to be easily removed and replaced. The wear-resistant liner 185 may be made from several parts 187, 189 for ease of removal and replacement.
Abstract:
A method and liner system for a pneumatically conveyed particulate conduit are provided. The conduit includes an inlet opening, an outlet opening, and a duct extending therebetween. The system includes a first polygonally-shaped wall member extending from an inlet opening end of the conduit to an opposing outlet opening end of the conduit. The first wall member includes a substantially planar body. The liner system further includes a second polygonally-shaped wall member extending from the inlet opening end of the conduit to the opposing outlet opening end of the conduit. The second wall member includes a substantially planar body having an integrally formed anti-roping bar that extends outwardly from a surface of the second wall member a predetermined height into a flow path through the duct. The liner system further includes a curved polygonally-shaped corner member extending from the inlet opening end of the conduit to the opposing outlet opening end of the conduit.
Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
A stationary coal nozzle for a burner on a pulverized coal fired furnace having an elongated tubular nozzle with an inlet for receiving a flowing stream of coal/air mixture and an outlet for discharging the flowing stream into a combustion zone of a furnace for burning. A multiple of transversely extending rib segments protrude into the nozzle from its inside wall and are circumferentially arranged for distributing and diffusing a flowing stream of pulverized coal in the coal/air mixture upon exiting the nozzle outlet. A deflector plate may also be provided which closes off an upper portion of the nozzle inlet to prevent pulverized fuel roping.
Abstract:
A nozzle tip for a pulverized solid fuel pipe nozzle of a pulverized solid fuel-fired furnace is provided. The nozzle tip includes an inner nozzle portion and an outer nozzle portion that receives therein the inner nozzle portion. The outer nozzle portion has a lower supporting surface that is configured to support a lower surface of the inner nozzle portion. The outer nozzle portion also includes a plurality of ribs that define therebetween a plurality of flow passages for the passage of air. The ribs, in addition to define the airflow passages, provide bolstering support for the lower supporting surface. The outer nozzle portion is formed from stainless steel.
Abstract:
A fuel head assembly (120) for a pulverized coal nozzle includes removeable back cover (123) that may be removed substantially horizontally to allow access to liners (141,143,145) inside of the fuel head assembly (120) for servicing. This may be used in places where there access from above the fuel head assembly (120) is restricted. The liners (141,143,145) are constructed of a wear-resistant material and include curved vanes (131,133) for more evenly distributing pulverized solid fuel particles, and for reducing erosion of the fuel head assembly (120).
Abstract:
A wear resistant substrate including a metal substrate having a surface, a reinforcing support attached to the surface and cured reaction products of an inorganic curable composition disposed over and through the reinforcing support and bonded to the surface. Also a method of enhancing the wear resistance of a metal surface by attaching a reinforcing support to the surface; disposing an inorganic curable composition over and through the reinforcing support and into contact with the surface; and curing the composition.
Abstract:
Submerged combustion burners having a burner body and a burner tip body connected thereto. The burner body has an external conduit and a first internal conduit substantially concentric therewith. The external conduit and first internal conduit form an annulus for passing a cooling fluid there between. A second internal conduit substantially concentric with the external conduit forms a second annulus between the first and second internal conduits. A burner tip body is connected to the burner body at ends of the external and first internal conduits. The burner tip body includes a generally central flow passage for a combustible mixture, the flow passage defined by an inner wall of the burner tip body. The burner tip body further has an outer wall and a crown connecting the inner and outer walls. The crown includes at least one physical convolution sufficient to increase surface area and fatigue resistance of the crown.