Abstract:
Disclosed are various embodiments of a light guide and corresponding ambient light sensor, computing device and backlit display for use in a portable electronic device. The various embodiments of the light guide are configured to permit ambient light to be collected efficiently and accurately over wide angles of incidence, even under low-ambient-light conditions. The efficient and accurate collection of ambient light by the various embodiments of the light guide disclosed herein may be employed to more accurately control the amount and degree of backlighting provided to a backlit display, which in turn can be used to conserve valuable battery power in a portable electronic device.
Abstract:
Remote control systems that can distinguish predetermined light sources from stray light sources, e.g., environmental light sources and/or reflections are provided. The predetermined light sources can be disposed in asymmetric substantially linear or two-dimensional patterns. The predetermined light sources also can output waveforms modulated in accordance with one or more signature modulation characteristics. The predetermined light sources also can output light at different signature wavelengths.
Abstract:
Remote control systems that can distinguish predetermined light sources from stray light sources, e.g., environmental light sources and/or reflections are provided. The predetermined light sources can be disposed in asymmetric substantially linear or two-dimensional patterns. The predetermined light sources also can output waveforms modulated in accordance with one or more signature modulation characteristics. The predetermined light sources also can output light at different signature wavelengths.
Abstract:
Detector calibration methods are described which enable the measurement of absolute power. The method includes using a power meter with traceability to the national standard for optical power to calibrate the power of each photodetector device of a detector with photodetector device arrays arranged in one dimension or two dimensions and to calibrate the output signals of the detector making it possible to measure the spatial distribution of a light source's power and also values of optical power with traceability to the national standard directly from the output signals of the detector.
Abstract:
The present invention relates to a detector calibration method which enables the measurement of absolute power, uses a power meter with traceability to the national standard for optical power to calibrate the power of each photodetector device of a detector with photodetector device arrays arranged in one dimension or two dimensions and to calibrate the output signals of the detector, and makes it possible to measure the spatial distribution of a light source's power and also values of optical power with traceability to the national standard directly from the output signals of the detector.
Abstract:
The intensity of each lamp which illuminates an object at an inspection station is controlled by controlling driving voltage applied to a power supply which supplies electrical power to the lamp. A phototransistor is used to sense the intensity of the lamp through an optical fiber. The sensor is followed by a digitally-controlled, variable gain circuit whose output is fed to an A-D converter. A microprocessor analyzes the digital signal from the A-D converter and corrects the driving voltage to the power supply to keep the intensity output of the lamp constant, as seen by a camera of a machine vision system. In this way, feedback corrects for a degraded lamp output due to aging. Preferably, the control of the level of lamp intensity can be changed from a remote system console of the machine vision system to reduce the need for access to internal parts, thereby reducing the probability that human error may cause a malfunction. The method and system of the present invention are particularly useful for inspection of digital versatile discs (DVD's) where the illumination must be changed. Also, the method and system are particularly useful in automated production lines where both audio and DVD discs are inspected. The lamp intensity control method and system can quickly change intensities for the appropriate discs.
Abstract:
A photomultiplier (10) with an elongated rectangular, cathode (20) tilted with respect to the inlet opening (14) is alternately illuminated by a measuring light beam (36) and a reference light beam (40). The measuring light beam (36) and the reference light beam (40) extend in a plane parallel to the longitudinal sides of the cathode (20) and impinge upon the cothode (20), such that they illuminate the same areas of the cathode (20).
Abstract:
A spectrophotometer comprising a light source, a spectroscope which separates the light of light source depending on the wavelengths, chops the light into the first and second light beams and allows the light beams to pass through the reference cell and sample cell, a photodiode which alternately receives the light beams from the reference cell and sample cell, a variable gain amplifier which amplifies a light current of photodiode, an A/D converter which converts and guides the reference output and sample output as the digital values synchronously with the chopping period, and a again setter which sets the gain of the variable gain amplifier depending on the reference output value from the A/D converter.
Abstract:
Method and apparatus for measuring light by frequency-modulating a light signal from a sample being measured and demodulating the modulated signal in synchronism with the modulating operation, wherein there is provided a delay circuit which produces a series of pulses for synchronous rectification of the modulated signal in response to and with a predetermined time delay after the modulating operation, so that before measurement of a specific sample the delay time is changed so as to determine the phase of the synchronous rectification pulses most suitable for measurement of the specific sample.
Abstract:
Apparatus for controlling output signals from two light detectors in a photometer. The sensitivities of the light detectors, or the gains in amplifiers for amplifying output signals from the light detectors are controlled in such a manner that the sensitivity characteristics and output characteristics of the two light detectors are in agreement with one another, to thereby improve the measuring accuracy thereof.