Abstract:
A method, an apparatus and a system are provided for deriving a characteristic of a product using X-rays. X-ray image data associated with the product is received, the X-ray image data being derived by performing an X-ray scan of the product using an X-ray imaging apparatus and conveying attenuation information resulting from interaction of X-rays with the product. A response of a reference product to X-rays is then simulated to generate simulated X-ray image data. The simulated X-ray image data and the received X-ray image data are then processed to derive one or more characteristics of the product. Information conveying the derived characteristic of the product is then released. In a specific implementation, the product is a liquid product comprised of a bottle at least partially filled with liquid and the derived characteristic of the liquid product is a threat status assessment associated with the liquid in the bottle. In another aspect, a simulation engine for simulating interactions between X-rays and objects is also provided.
Abstract:
Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether there are drugs concealed in the inspected liquid article based on the difference between the acquired physical attributes and reference physical attributes of the inspected liquid article. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image.
Abstract:
A sample presentation device for radiation-based analytical equipment comprising a mounting base, a carrier carried by, and adjustable in position, relative to the mounting base, and an arm extending from the carrier and having at its opposite end a terminal member; Each of the carrier and terminal member has a coaxial connector for receiving two opposite end regions of a capillary tube that forms, in use, a reaction cell; A radiant heater, typically an infrared heater, is radially offset from the axis of the coaxial connectors for heating, in use, a capillary tube mounted by way of the coaxial connectors; The carrier and terminal member preferably have heaters associated therewith for heating the flow passages through them; The terminal member preferably has a passage generally coaxial with the connector for receiving a communications conductor carrying a temperature sensor at its end that is operatively located generally centrally within a capillary.
Abstract:
An apparatus and method are provided for measuring flow velocity of a multi-phase fluid mixture. The proposed apparatus includes a radiation device, a detection device, and an analysis device. The radiation device generates a beam of photons to irradiate the mixture spatially over a section of flow of the mixture. The detection device is spatially configured to receive photons emanating from the section of flow of the mixture at different intervals of time. The detection device provides an image of a spatial distribution of the received photons for each the interval of time. The analysis device determines flow velocity of one or more phases of the mixture based on a temporal sequence of the images of the spatial distributions of the received photons.
Abstract:
Disclosed are a method and a device for security-inspection of liquid articles with dual-energy CT imaging. The method comprises the steps of obtaining one or more CT images including physical attributes of liquid article to be inspected by CT scanning and a dual-energy reconstruction method; acquiring the physical attributes of each liquid article from the CT image; and determining whether there are drugs concealed in the inspected liquid article based on the difference between the acquired physical attributes and reference physical attributes of the inspected liquid article. The CT scanning can be implemented by a normal CT scanning technique, or a spiral CT scanning technique. In the normal CT scanning technique, the scan position can be preset, or set by the operator with a DR image, or set by automatic analysis of the DR image.
Abstract:
A method for performing security screening at a checkpoint is provided. The method includes providing an X-ray imaging system having a scanning area and providing a supporting device for supporting articles to be scanned in the scanning area, wherein the supporting device has at least two reference areas manifesting respective X-ray signatures when exposed to X-rays, the X-ray signatures being distinguishable from one another. The method further includes placing an article to be scanned on the supporting device, introducing the article to be scanned in the scanning area while the article is supported by the supporting device and using the X-ray imaging system for deriving the X-ray signatures of the reference areas and for obtaining an X-ray image of the article while the supporting device is in the scanning area. The method further includes using the X-ray signatures to derive X-ray attenuation information from the X-ray image and using the X-ray attenuation information in determining if the article is a security threat.
Abstract:
A method, an apparatus and a system are provided for assessing at a security checkpoint the threat status of a liquid product, where the liquid product is comprised of a bottle at least partially filled with liquid. In accordance with a broad aspect, the level of fill is used as a factor in the determination of the threat status of the liquid product. In accordance with another broad aspect, an X-ray image of the liquid product is obtained and processed to derive a level of fill of the bottle and the threat status of the liquid product is determined at least in part based on the level of fill of the bottle. In accordance with yet another broad aspect, an X-ray image of the liquid product is processed to derive location information associated with a meniscus formed by the liquid in the bottle. An estimated length of a path followed by X-rays through the liquid held in the bottle is derived in part based on the location information and is used to determine the threat status of the liquid product.
Abstract:
A method for identifying a substance is described. The method includes detecting, by a first scatter detector, a first set of scattered radiation, generating a first effective atomic number from the first set of scattered radiation, detecting, by a second scatter detector, a second set of scattered radiation, generating a second effective atomic number from the second set of scattered radiation, and determining whether the first effective atomic number is within a limit of the second effective atomic number.
Abstract:
A system for measuring the density of a fluid in a vessel, the system including: at least one gamma-ray source positioned proximate to the vessel; at least one gamma-ray detector positioned proximate to the vessel, wherein the at least one gamma-ray detector is configured to detect gamma rays backscattered by the fluid from the at least one gamma-ray source; and a translator for converting the detected gamma-ray backscatter to a density value. A method to determine properties of a fluid in a vessel, the method including: positioning a gamma-ray source proximate to the vessel; positioning a gamma-ray detector proximate to the vessel; detecting gamma rays backscattered by the fluid from the gamma-ray source with the gamma-ray detector; determining a density of the fluid based upon an intensity of backscattered gamma rays received by the gamma-ray detector.
Abstract:
System and methods for measuring the density, level, or interface position of a fluid or fluids in a vessel using gamma-ray backscatter are disclosed. The gamma-ray instruments disclosed may account for vessel wall buildup or deterioration. Methods disclosed herein include detecting gamma rays backscattered by a fluid from a gamma-ray source positioned proximate to a vessel with at least two gamma-ray detectors positioned proximate to the vessel and to each other; and determining a density, level, or interface value of the fluid based upon intensities of backscattered gamma rays received by the two or more gamma-ray detectors; wherein the vessel wall is subject to at least one of buildup and deterioration. The density, level, or interface may be a function of a ratio of the intensity of backscattered gamma rays received by two or more of the detectors.