摘要:
A method and apparatus for monitoring untagged objects in a target area including calibrating a radio environment monitoring system including a rules engine and a baseline data set for a target area by recording a set of changes to the RF environment fingerprint of the target area received by the radio environment monitoring system as the target area is filled with objects. During system operation, scanning the target area with the radio environment monitoring system for a current RF environment fingerprint, comparing the current RF environment fingerprint with the baseline data set by a rules engine and reporting an output of the rules engine.
摘要:
A method and apparatus for monitoring untagged objects in a target area including calibrating a radio environment monitoring system including a rules engine and a baseline data set for a target area by recording a set of changes to the RF environment fingerprint of the target area received by the radio environment monitoring system as the target area is filled with objects. During system operation, scanning the target area with the radio environment monitoring system for a current RF environment fingerprint, comparing the current RF environment fingerprint with the baseline data set by a rules engine and reporting an output of the rules engine.
摘要:
Using a radar to detect a known target likely to be positioned at approximately a predetermined height close to other targets, these other targets also being positioned at approximately the predetermined height. A first phase of detecting the known target is carried out by performing an azimuth scan. When the known target has been detected at a certain distance Di at a certain azimuth angle θaz, a second detection phase is carried out at said azimuth angle θaz and at an elevation angle θEL corresponding to that of an object situated at said distance Di at the predetermined height. The target is said to be detected if it is detected at the elevation angle θEL at a distance D approximately equal to the distance Di.
摘要:
A process and a device for detecting aircrafts circulating in an air space surrounding an airplane is disclosed. The device (1A) comprises means (2, 3) for detecting an aircraft circulating in the air space surrounding the airplane and, in case of a detection, for determining a first position and a second position of the aircraft with respect to the airplane, and means (8A) for comparing said first and second positions so as to check whether they match.
摘要:
A method and system for communicating using pulsed radar signal data links is disclosed. The method comprises encoding downlink data with a signature sequence as a secondary function onto a continuous wave pulse signal having a primary function at a master device. The data-encoded pulse signal from the master device is interpreted at one or more slave devices configured to receive the pulse signal within a first communications bandwidth of the primary and secondary functions. The master device synchronizes returning communication transmissions from each of the one or more slave devices for the secondary function within a prescribed return interval of the primary function.
摘要:
A time delay period between a first signal and a delayed second signal is iminated, restoring the original time relationship between the two signals as derived from a common trigger signal which may vary in its repetition rate. Known, uniform time increments are defined by a constant frequency source producing pulses connectable to both a static shift register having a predetermined number of bits, and a counter having its maximum cumulative count set at the sum of the predetermined number of bits in the shift register and the number of uniform time increments in the time delay period between the first and second signals. The common trigger signal is operative to simultaneously connect the source of clocking pulses to actuate both the shift register and the counter. Upon reception the delayed second signal is connected to the input of the shift register and upon reaching the maximum cumulative count of the counter, the clocking pulses are disconnected from both the shift register and the counter. At the next successive trigger signal, the shift register is reactuated to produce a retimed second signal restored to its original time disposition relative to the first signal.
摘要:
An airborne radar system is disclosed utilizing multiple fixed antenna arrays mounted within the periphery of the aircraft to avoid aerodynamic modifications and optimumly placed to achieve 360* surveillance coverage. The arrays preferably include a fore mounted array, an aft mounted array, a port mounted array and a starboard mounted array for respectively firing beams in different azimuth sectors relative to the aircraft. Each array is comprised of dipole elements having phase shifters coupled thereto for steering a beam within the corresponding sector. The primary radar antennas time share an exciter, transmitter, receiver and signal processor through switching devices. Time allocation between antennas and between operational modes such as ''''search'''' or ''''track'''' is based on various factors such as mission objectives, current target characteristics and radar purpose. Time allocation is preferably determined by an ''''on line'''' stored program digital computer which generates a radar control command to define the parameters for each beam to be fired. This procedure involves calculating the priority value of each track and search beam to be fired in accordance with predetermined criteria contained in the stored program. The priority value of each track beam to be fired involves determining the update rate for that target which is calculated based on the characteristics of the target. Priority values are then determined based on a comparison between the elapsed time since the last update and the calculated update rate.
摘要:
An automotive radar system (100) including first and second radar sensors (110, 120) transmitting a radar signal, and a processor (130). Each radar sensor (110, 120) determines ranges to one or more targets (140), where each determined range is associated with a complex value (Vmn) in a range vector. The processor (130) determines a difference in the ranges determined by the first and second radar sensors (110, 120). The processor (130) converts the difference in ranges to an intermediate frequency, IF, phase value ( IF) by relating the difference in ranges to the radar bandwidth (BW). The processor (130) adjusts the complex values (Vmn) in the range vectors by the IF phase value (ϕIF) and determines an angle (a) to at least one of the targets (140) based on the adjusted complex values in the range vectors from each radar sensor (110, 120).
摘要:
Systems, methods, and computer-readable media are described for compact radar systems. In some examples, a compact radar system can include a first set of transmit antennas, a second set of receive antennas, one or more processors, and at least one computer-readable storage medium storing computer-executable instructions which, when executed by the one or more processors, cause the radar system to coordinate digital beam steering of the first set of transmit antennas and the second set of receive antennas, and coordinate digital beam forming with one or more of the second set of receive antennas to detect one or more objects within a distance of the radar system.