Abstract:
A transmission apparatus for a wireless device, comprising: an antenna for receiving an original signal and for backscattering a modulated signal containing information from the wireless device; a variable impedance coupled to the antenna, the variable impedance having an impedance value; a delta-sigma modulator coupled to the variable impedance for modulating the impedance value, and thereby a backscattering coefficient for the antenna, in accordance with the information to generate the modulated signal; and, a decoder coupled to the delta-sigma modulator for generating the impedance value from the information.
Abstract:
A method for locating a mobile element in a predetermined zone, including supplying power to an on-board module in the mobile element, where the on-board module includes an electronic circuit and an on-board coil, generating a locating signal by the electronic circuit and transmission of the locating signal via the on-board coil, picking up the locating signal by receiver coils on a support in proximity to the predetermined zone, each of the receiver coils configured to pick up the locating signal when the mobile element is in proximity, and determining a location of the mobile element in the predetermined zone by detecting a signal level on the support in the form of an array by a processing unit connected to the support. The electronic circuit and the on-board coil constitute an RLC circuit that oscillates, generating the locating signal by sudden interruption of the current through the on-board coil.
Abstract:
A transmission apparatus for a wireless device, comprising: an antenna for receiving an original signal and for backscattering a modulated signal containing information from the wireless device; a variable impedance coupled to the antenna, the variable impedance having an impedance value; a delta-sigma modulator coupled to the variable impedance for modulating the impedance value, and thereby a backscattering coefficient for the antenna, in accordance with the information to generate the modulated signal; and, a decoder coupled to the delta-sigma modulator for generating the impedance value from the information.
Abstract:
A system for finding a vehicle includes a function controller, a key for matching with and controlling the function controller, and a portable device. The portable device can match with the key and transmit an instruction to the key. The key includes a first positioning module, and the function controller includes a second positioning module coupled to the first positioning module. The first positioning module and the second positioning module can receive data as to the distance between and respective locations of the chip key and the function controller. The present disclosure also discloses a method for finding vehicle.
Abstract:
An animal tracking device for tracking an animal shot with an arrow. The animal tracking device may include an antenna, a controller, an accelerometer switch, a battery powering the controller and/or accelerometer switch, an animal attachment component, and a housing physically connecting components of the animal tracking device. The accelerometer switch may measure an amount of G force it experiences and send an interrupt signal to the controller when the amount of G force measured is at or greater than a threshold amount for a threshold amount of time, indicating that the arrow has been shot. The controller may send wireless signals to a receiver via the antenna in response to receiving the interrupt signal. The housing may be detachably attached to the arrow. The animal attachment component may attach to an animal shot by the arrow and force the housing away from the arrow.
Abstract:
An animal tracking device removably attachable to an arrow and including an antenna, a controller, a battery for powering the controller, a housing for housing the antenna, controller, and battery, and an animal attachment component fixed to the housing. The controller may transmit wireless signals to a receiver via the antenna. The housing may have a first and second portion pivotally attached at a first joint. The first and second portions may also meet, but not attach with each other, at a second joint in a closed position. The first and second portions may pivot between the closed position and an open position about the first joint, may be naturally biased in the open position, and may be detachably attached in the closed position to the arrow shaft. The animal attachment component may attach to an animal shot by the arrow, forcing the housing away from the arrow.
Abstract:
A transmission apparatus for a wireless device, comprising: an antenna for receiving an original signal and for backscattering a modulated signal containing information from the wireless device; a variable impedance coupled to the antenna, the variable impedance having an impedance value; a delta-sigma modulator coupled to the variable impedance for modulating the impedance value, and thereby a backscattering coefficient for the antenna, in accordance with the information to generate the modulated signal; and, a decoder coupled to the delta-sigma modulator for generating the impedance value from the information.
Abstract:
A method and apparatus for monitoring untagged objects in a target area including calibrating a radio environment monitoring system including a rules engine and a baseline data set for a target area by recording a set of changes to the RF environment fingerprint of the target area received by the radio environment monitoring system as the target area is filled with objects. During system operation, scanning the target area with the radio environment monitoring system for a current RF environment fingerprint, comparing the current RF environment fingerprint with the baseline data set by a rules engine and reporting an output of the rules engine.
Abstract:
A radar device is provided. The radar device is installed in a movable body, transmits electromagnetic waves at a predetermined frequency, and receives response waves transmitted from a transponder device in response to the electromagnetic waves, respectively. The radar device includes a representative distance calculating module for calculating a representative distance from the radar device to the transponder device based on the response waves that are continuous over a predetermined azimuth angle range, a representative relative azimuth calculating module for calculating a representative relative azimuth of the transponder device from the radar device based on the continuous response waves, and a positioning module for calculating a location of the radar device based on positional information of the transponder device that is contained in each of the response waves, the calculated representative distance, and the calculated representative relative azimuth.
Abstract:
A system for determining the location of an object includes an interrogator remote from the object and a transponder located at the object. The interrogator receives GPS signals and transmits pre-positioning data and a tracking signal to the transponder. The pre-positioning data includes pseudorandom noise (PRN) code number, Doppler frequency offset and code phase offset while the tracking signal includes reference time and frequency information. The transponder collects RF samples of at least one of the GPS signals associated with one of the PRN code numbers and correlates the RF samples of the GPS signal against code replicas of the GPS signal based on the Doppler frequency offset, code phase offset and reference time and frequency information for that GPS signal to produce the correlation snapshot. The transponder transmits the correlation snapshot to the interrogator and the interrogator determines the pseudorange associated with the GPS signal using the correlation snapshot.