Abstract:
Apparatus for connecting an HV cable to the cathode of an X-ray tube is provided with a housing disposed for attachment to the X-ray tube, and a quantity of epoxy or other electric insulating material contained within the housing. The epoxy serves to insulate the exposed end portions of the HV cable conductors, which extend beyond the cable insulation for insertion into the X-ray tube casing. The connector apparatus further includes a heat transfer device, such as a heat pipe, which extends long the cable within the connector housing. A quantity of working fluid contained in the heat transfer device is disposed for bi-directional movement along the device to transfer heat from a first location within the insulating material to a second location proximate to the housing.
Abstract:
Various methods and systems are provided for an X-ray tube cathode focusing element. In one example, a focusing element is configured with a first side positioned adjacent to an electrode plate. An insulator having a first side is positioned adjacent the electrode plate and a second, opposite side adjacent to a cathode base. The focusing element has at least three filaments of different sizes positioned in respective channels of different widths, where each of the at least three filaments are coupled to two current feedthroughs, each current feedthrough configured with a leg extending through a central, hollow space of the focusing element, the electrode plate, the insulator, and the cathode base.
Abstract:
Various methods and systems are provided for an X-ray tube cathode focusing element. In one example, a focusing element is configured with three electron emission filaments, an integrated edge focusing, and a bias voltage. The integrated edge focusing may include a continuous single architecture with rounded edges, and a voltage of the focusing element may be negatively biased relative to a voltage of the electron emission filaments.
Abstract:
Ceramic metallization in an x-ray tube. In one example embodiment, a metalized ceramic plate for an x-ray tube includes a first side configured to reside inside an evacuated enclosure of an x-ray tube, a second side configured to reside outside the evacuated enclosure, a recess formed in the second side, feedthru openings that extend through the plate between the first side and the recess, and metallization formed around the perimeter of the recess and electrically connected to one of the feedthru openings.
Abstract:
A modular insulator assembly for an x-ray tube includes an annular insulator having a cylindrical perimeter wall, the insulator constructed of an electrically insulative material. A wall member is fixedly attached to and extending beyond the cylindrical perimeter wall, and a first shield positioned adjacent to the wall member and having an end extending proximate a corner formed by the wall member and the insulator.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 260 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
A high voltage connector assembly is disclosed for use with high power apparatus including x-ray devices. The present connector is a pancake-style connector, and interconnects a high voltage cable with the cathode of the x-ray tube. The present connector includes a housing, a socket assembly, and insulating material surrounding the socket assembly to insulate it from the housing. The socket assembly comprises a potting-filled conductive sleeve having a continuously shaped, smooth terminal end. The terminal end of the sleeve forms a triple junction with the insulating material and air present near the sleeve. The continuously smooth terminal sleeve end prevents electrical arcing to occur at the triple junction by reducing field strength at the terminal end and urging the electric field of the socket assembly away from the triple junction. The reduction in electrical arcing propensity allows the x-ray device to operate at relatively higher operating voltages.
Abstract:
An imaging tube (30) includes multiple high voltage elements (64). A voltage-clamping device (70) is coupled between the high voltage elements (64) and prevents the occurrence of overvoltage transients in the minor insulation of an imaging tube (30).
Abstract:
This invention aims to provide a through terminal capable of maintaining air-tightness stably and an X-ray tube having the through terminal. The through terminal includes a tubular member, a plate member formed of an insulating ceramic material and bonded to an inner periphery of the tubular member in a hermetically sealed state, and pins extending through the plate member so that the portions thereof fitted through the plate member are located inside metallic tubes respectively and bonded to the plate member in a hermetically sealed state through the tubes. The tubular member is provided on an inner periphery thereof with a stepped portion for abutment thereagainst of a plate face of the plate member. The tubular member is formed of an alloy including at least iron, nickel, and cobalt.