Abstract:
In its most general terms the invention compensates for the effect of the mass offset in the prior art calibration method. This can be achieved either by correcting for the offset or assigning mass to the peaks in such a way that the offset is avoided. Accordingly in a first aspect there is provided a method of calibrating a reflectron time-of-flight mass spectrometer using a spectrum generated by fragment ions wherein a measured mass value is modified to take account of the effect of post source decay and that modified value is used for calibration. A modified calibration function can then be defined and used to determine actual fragment ion masses of an unknown compound.
Abstract:
A reflector is provided as well as a time-of-flight mass spectrometer with a reflector. The mass spectrometers is used for determining the chemical structure of molecules as well as for the quantitative analysis of unknown mixtures of substances. Design effort is minimized, especially for the reflector. The reflector is present in the time-of-flight mass spectrometer to generate an electrostatic field permitting the best possible focusing for the deflection of the ions. The reflector body is made in one piece as a radially symmetrical trough. The reflector is preferably made of a stainless steel or a carrier material with conductive coating and is polished on the inner side of the trough.
Abstract:
The invention relates to an energy-focusing and space-angle focusing reflector for time-of-flight mass spectrometers. The invention consists in producing an adjustable space-angle focusing system by means of an adjustably weaker field with curved equipotential lines at the end of the reflector instead of a fully homogeneous electrical reflection field.
Abstract:
The invention relates to an energy-focusing and space-angle focusing reflector for time-of-flight mass spectrometers. The invention consists in producing an adjustable space-angle focusing system by means of an adjustably weaker field with curved equipotential lines at the end of the reflector instead of a fully homogeneous electrical reflection field.
Abstract:
A novel technique utilizing the precision of printed circuit board design and the physical versatility of thin, flexible substrates is disclosed to produce a new type of ion reflector. A precisely defined series of thin conductive strips (traces) are etched onto a flat, flexible circuit board substrate. Preferably, the thin conductive strips are further apart at one end of the substrate and get increasingly closer towards the other end of the substrate. The flexible substrate is then rolled into a tube to form the reflector body, with the conductive strips forming the rings of the ion reflector. The spacing between the traces, and hence the ring spacing, can be readily varied by adjusting the conductor pattern on the substrate sheet during the etching process. By adjusting the spacing between the rings, the characteristics of the field created by the reflectron can be easily customized to the needs of the user.
Abstract:
In its most general terms the invention compensates for the effect of the mass offset in the prior art calibration method. This can be achieved either by correcting for the offset or assigning mass to the peaks in such a way that the offset is avoided. Accordingly in a first aspect there is provided a method of calibrating a reflectron time-of-flight mass spectrometer using a spectrum generated by fragment ions wherein the mass of the fragment ion is assigned using the mono-isotopic peak only. In other words a value corresponding to the mass of the fragment ion used for calibration is assigned using the fragment ion mono-isotopic peak only and said value is used to calibrate the spectrometer.
Abstract:
An improved apparatus and method for the analysis of ions generated by matrix-assisted laser desorption is disclosed. This apparatus and method enhances the mass spectral resolution compared to previous devices and methods by producing electrical modulation of the kinetic energy imparted to the generated ions in a matrix-assisted laser desorption mass spectrometer. This modulation causes parent ions of interest to be substantially reflected (and detected) or substantially not reflected (and not detected) within the spectrometer, while fragment ions produced from the parent ion of interest are substantially reflected (and detected) independent of said modulation. A difference signal is generated between electrical signals sensed when the parent ions are reflected and electrical signals sensed when the parent ions are not reflected thereby mitigating the effects on the mass spectrum of the undesired fragment ions.
Abstract:
In a time of flight mass spectrometer ions accelerated from the source are reflected by a soft reflection field toward the detector, the magnitude and direction of the reflection field being such as to lengthen the time of flight of ions of relatively high initial kinetic energy more than ions of relatively low initial kinetic energy so that ions of the same mass to charge ratio, but of different initial velocity will have the same total time of flight from the source to the detector. Thus, ions of a given charge to mass ratio which enter the system at different initial energies at a given time will all arrive at the detector at the same time.
Abstract:
A Time of Flight analyser comprising a flight tube (160) and a reflectron (170), wherein the reflectron comprises a stack of electrodes (172) that are compressed against the flight tube such that they remain parallel to each other under compression.
Abstract:
Improved ion mirrors 30 (FIG. 3) are proposed for multi-reflecting TOF MS and electrostatic traps. Minor and controlled variation by means of arranging a localized wedge field structure 35 at the ion retarding region was found to produce major tilt of ion packets time fronts 39. Combining wedge reflecting fields with compensated deflectors is proposed for electrically controlled compensation of local and global misalignments, for improved ion injection and for reversing ion motion in the drift direction. Fine ion optical properties of methods and embodiments are verified in ion optical simulations.