Abstract:
Systems and methods are disclosed for ion injection into an electrostatic trap. Various aspects of this disclosure provide a mass spectrometer system including a primary ion path including a plurality of quadrupoles; and a secondary ion path coupled to the primary ion path utilizing turning elements. The secondary ion path may include an electrostatic linear ion trap (ELIT), the ELIT being operable to analyze ions diverted from the primary ion path and return them to the primary ion path. The primary ion path may include a time-of-flight mass analyzer. The secondary ion path may be bi-directional. Ions may travel in a first direction when coupled into the secondary ion path using a first turning element in the primary ion path and may travel in a second direction when coupled into the secondary ion path utilizing a second turning element in the primary ion path. The secondary ion path may include a collision quadrupole.
Abstract:
Improved ion mirrors 30 (FIG. 3) are proposed for multi-reflecting TOF MS and electrostatic traps. Minor and controlled variation by means of arranging a localized wedge field structure 35 at the ion retarding region was found to produce major tilt of ion packets time fronts 39. Combining wedge reflecting fields with compensated deflectors is proposed for electrically controlled compensation of local and global misalignments, for improved ion injection and for reversing ion motion in the drift direction. Fine ion optical properties of methods and embodiments are verified in ion optical simulations.
Abstract:
A time-of-flight mass spectrometer is disclosed comprising ion optics that map an array of ions at an ion source array (71) to a corresponding array of positions on a position sensitive ion detector (79). The ion optics include at least one gridless ion mirror (76) for reflecting ions, which may compensate for various aberrations and allows the spectrometer to have relatively high mass and spatial resolutions.
Abstract:
A Time of Flight mass analyzer is disclosed comprising an annular ion guide having a longitudinal axis and comprising a first annular ion guide section and a second annular ion guide section. Ions are introduced into the first annular ion guide section so that the ions form substantially stable circular orbits within the first annular ion guide section about the longitudinal axis. An ion detector is disposed within the annular ion guide. Ions are orthogonally accelerated in a first axial direction from the first annular ion guide section into the second annular ion guide section. An axial DC potential is maintained along at least a portion of the second annular ion guide section so that the ions are reflected in a second axial direction which is substantially opposed to the first axial direction. The ions undergo multiple axial passes through the second annular ion guide section before being detected by the ion detector.
Abstract:
A charged particle analyzer apparatus comprising two opposing ion mirrors each mirror comprising inner and outer field-defining electrode systems elongated along an axis z, the outer system surrounding the inner, whereby when the electrode systems are electrically biased the mirrors create an electrical field comprising opposing electrical fields along z; and at least one arcuate focusing lens for constraining the arcuate divergence of a beam of charged particles within the analyzer while the beam orbits around the axis z, the analyzer further comprising a disc having two faces at least partly spanning the space between the inner and outer field defining electrode systems and lying in a plane perpendicular to the axis z, the disc having resistive coating upon both faces. A mass spectrometer system comprising a plurality of the charged particle analyzers arranged as a parallel array.
Abstract:
Certain embodiments described herein are directed to reflectron assemblies and methods of producing them. In some configurations, a reflectron comprising a plurality of lenses each comprising a planar body and comprising a plurality of separate and individual conductors spanning a central aperture from a first side to a second side of a first surface of the planar body is described. In some instances, the plurality of conductors are each substantially parallel to each other and are positioned in the same plane.
Abstract:
Certain embodiments described herein are directed to time of flight tubes comprising a cylindrical tube comprising an inner surface and an outer surface, the cylindrical tube comprising an effective thickness and sized and arranged to couple to and support a reflectron assembly inside the cylindrical tube. In some configurations, the cylindrical tube further comprises a conductive material disposed on the inner surface of the cylindrical tube, the conductive material present in an effective amount to provide a field free region for ions when the conductive material is charged.
Abstract:
A method of selecting ions of interest from a beam of ions using an analyzer, the method comprising: (i) providing an analyzer comprising two opposing ion mirrors each mirror comprising inner and outer field-defining electrode systems elongated along an analyzer axis z, each system comprising one or more electrodes, the outer system surrounding the inner; (ii) causing the beam of ions to fly through the analyzer along a main flight path in the presence of an analyzer field so as to undergo within the analyzer at least one full oscillation in the direction of the analyzer axis while orbiting about or oscillating between one or more electrodes of the inner field defining electrode system; (iii) providing one or more sets of electrodes adjacent the main flight path; (iv) constraining the arcuate divergence from the main flight path of ions of interest by applying one set of voltages to one or more of the sets of electrodes adjacent the main flight path when the ions of interest are in the vicinity of at least one of said one or more sets of electrodes adjacent the main flight path and applying one or more different sets of voltages to the said one or more sets of electrodes adjacent the main flight path when the ions of interest are not in the vicinity of at least one of said one or more sets of electrodes adjacent the main flight path; and: (v) ejecting the ions of interest from the analyzer. Also provided is a charged particle analyzer comprising the two opposing ion mirrors comprising inner and outer field-defining electrode systems elongated along an analyzer axis z; and at least one arcuate focusing lens for constraining the arcuate divergence of a beam of charged particles within the analyzer while the beam orbits around the axis z, the analyzer further comprising a disc having two faces at least partly spanning the space between the inner and outer field defining electrode systems and lying in a plane perpendicular to the axis z, the disc having resistive coating upon both faces.
Abstract:
A method of reflecting ions in a multireflection time of flight mass spectrometer is disclosed. The method includes guiding ions toward an ion mirror having multiple electrodes, and applying a voltage to the ion mirror electrodes to create an electric field that causes the mean trajectory of the ions to intersect a plane of symmetry of the ion mirror and to exit the ion mirror, wherein the ion are spatially focussed by the mirror to a first location and temporally focused to a second location different from the first location. Apparatus for carrying out the method is also disclosed.
Abstract:
In an ion reflector (4) configured from a plurality of electrodes, electrodes 42 disposed in a second stage region (S2) for reflecting ions after deceleration are formed thinner than electrodes (41) disposed in a first stage region (S1) for decelerating the ions.The thin electrodes suppress unevenness of potential, in particular, in a path away from the center axis of the reflector, which results in improvement of isochronism of an ion packet passing on the path. The thick electrodes (41, 43) disposed in the first stage region (S1) prevents stretching of the grid electrodes (G1, G2) from being affected, and unevenness of potential in the first stage region (S1) hardly affects isochronism of the ions. By appropriately adjusting thicknesses and a pitch of the electrodes (41, 42, 43, 44) adjacent to one another so as to align intervals between the electrodes (41, 42, 43, 44), it is possible to use spacers having the same size in common. Since the number of electrodes in the first stage region (S1) can be reduced, an increase in costs is suppressed. Consequently, it is possible to bring an electric field of an ion reflection region closer to an ideal state and improve mass-resolving power while suppressing costs.