Abstract:
A short arc type super high pressure discharge lamp has a pair of electrodes, a light emitting portion in which greater than 0.15 mg/mm3 is enclosed, and sealing portions provided on both side of the light emitting portion, wherein at least one of the pair of electrodes has a thick portion which extends into one of the sealing portions and a coil is wound around the thick portion in the one of the sealing portion via gap.
Abstract translation:短弧型超高压放电灯具有一对电极,其中封闭有大于0.15mg / mm 3的发光部分和设置在发光部分两侧的密封部分,其中至少一个 一对电极的厚度部分延伸到一个密封部分中,并且线圈缠绕在密封部分通孔之一中的厚部分上。
Abstract:
In order to improve a pumping light source for laser-active media comprising an outer member enclosing a gas discharge medium, a first electrode acting as a cathode and having a first electrode end located within the outer member, a second electrode acting as an anode and having a second electrode end located within the outer member and a gas discharge chamber located within the outer member between the electrode ends facing one another, in such a manner that the service life thereof is longer it is suggested that the first electrode end be essentially cooled by radiation and that a predominantly diffuse gas discharge be formed proceeding from an areally extended surface area located at the first electrode end.
Abstract:
A photolithography tool includes an anode and a cathode composed of a first material and a second material. The second material has a lower work function than the first material. Electrons emitted from the cathode ionize a gas into a plasma that generates EUV light. The EUV light is focused on a mask to produce an image of a circuit pattern. The image is projected on a semiconductor wafer to produce a circuit.
Abstract:
(Object) The object of the invention is to improve the thermal radiation characteristic of the electrodes in a high pressure discharge lamp of the short arc type in which the input power has been increased in order to increase the amount of radiant light, and to reduce the electrode temperature with high efficiency. (Arrangement) The object is achieved as claimed in the invention in a high pressure discharge lamp of the short arc type in the emission tube of which there is a pair of electrodes, in that at least part of the sides of the above described electrodes is provided with a groove area, that the depth D of this groove area is within 12% of the electrode diameter and that the relation D/P is between the depth D of the groove area and the pitch P between the grooves is greater than or equal to 2.
Abstract:
A high-pressure discharge lamp is configured to regulate the relationship between the radius r (mm) of the tungsten rods forming the electrodes and the lamp current I (amperes) using the formula 1 1.5 null I null null r 2 null 9 when the ratio of the circumference of the circle to its diameter is expressed as null. The high-pressure discharge lamp suppresses early blackening, and achieves a long-life light source.
Abstract:
There is provided a cold cathode fluorescent lamp including a transparent tube including first and second light-emitting areas defined by partitioning an inner space of the transparent tube, a first terminal electrode positioned in the first light-emitting area and at a longitudinal end of the first light-emitting area located closer to an end of the tube, a second terminal electrode positioned in the second light-emitting area and at a longitudinal end of the second light-emitting area located closer to the other end of the tube, a first intermediate electrode positioned in the first light-emitting area and at the other longitudinal end of the first light-emitting area, a second intermediate electrode positioned in the second light-emitting area and at the other longitudinal end of the second light-emitting area, a first lead-in wire connected to the first terminal electrode through the longitudinal end of the first light-emitting area, a second lead-in wire connected to the second terminal electrode through the longitudinal end of the second light-emitting area, a third lead-in wire connected to the first intermediate electrode through the other longitudinal end of the first light-emitting area, and a fourth lead-in wire connected to the second intermediate electrode through the other longitudinal end of the second light-emitting area. The above-mentioned cold cathode fluorescent lamp makes it possible to lower a break-down voltage and a discharge voltage down to about halves of them in a conventional fluorescent lamp, and hence, discharged electrons are not attracted to a metal part. Thus, it is possible to prevent a cold cathode fluorescent lamp from not turning on due to electron discharge.
Abstract:
A high-pressure metal halide discharge lamp includes a sealed light-transmitting discharge vessel, first and second electrodes disposed in the discharge space, and a pair of conductive wires connected to the respective electrodes. The sealed light-transmitting discharge vessel has a pair of seals and envelops a discharge space, which has a gas filling comprising rare gas and metal halides. A first electrode with an emitter disposed in the discharge space at an one side is made of a metal having a high melting point. A second electrode without an emitter disposed in the discharge space at the other side is made of a metal having a high melting point. The pair of conductive wires, which are connected to the respective electrodes, are located in the respective seals and extend from the discharge vessel.