Abstract:
A data driving apparatus for a liquid crystal display includes a plurality of digital-to-analog converter integrated circuits, a plurality of output buffer integrated circuits, at least two of the plurality of output buffer integrated circuits being commonly connected to each of the plurality of digital-to-analog converter integrated circuits, and a timing controller for controlling the plurality of digital-to-analog converter integrated circuits and the plurality of output buffer integrated circuits, wherein each of the plurality of digital-to-analog converter integrated circuits is mounted on a tape carrier package connected to a liquid crystal display panel, and each of the plurality of output buffer integrated circuits is mounted on the liquid crystal display panel.
Abstract:
An active matrix organic light emitting device includes a plurality of gate lines and data lines respectively arranged along transverse and longitudinal directions for defining a plurality of pixel regions, a plurality of power lines arranged substantially parallel to the data lines, at least one switching thin film transistor disposed within one of the pixel regions, at least one driving thin film transistor disposed within the one of the pixel regions, an organic light emitting unit formed within the one of the pixel regions to emit light by application of a signal through one of the power lines as the driving thin film transistor is enabled, and a plurality of power supplying lines having at least two layers electrically interconnected to each other, the power supplying lines electrically connected with the plurality of the power lines to supply the signal to each of the power lines.
Abstract:
A method of adjusting a size of a substrate of a liquid crystal display device includes determining if first and second substrates that are sealed together and have a liquid crystal material disposed therebetween are mutually aligned, one of the first and second substrates having a deposition layer formed thereupon, and controlling an amount of deposition stress of the deposition layer when the first and second substrates are not mutually aligned.
Abstract:
A transflective liquid crystal display device includes first and second substrates facing into each other, a pixel electrode on an inner surface of the second substrate, the pixel electrode having a first borderline between the reflective and transmissive portions, a transflective color filter layer on an inner surface of the first substrate, the transflective color filter layer having a second borderline between the reflective and transmissive portions, the first and second borderlines being not aligned in a vertical direction and separated by a distance to be within an attachment error margin, and a transmittance of the transflective color filter layer at the reflective portion being higher than that of the transflective color filter layer at the transmissive portion, a common electrode on the transflective color filter layer, and a liquid crystal layer between the pixel electrode and the common electrode.
Abstract:
The present invention discloses a color-correction method and apparatus for a liquid crystal display that effectively corrects a color balance. In the method and apparatus, input data are modulated to allow a high-speed driving. Also, a voltage level of the input data is reduced based on a modulated amount of the changed data when voltage level of the current frame is equal to that of the previous frame.
Abstract:
A method of fabricating a spacer for a liquid crystal display device includes steps of forming a transparent electrode on a substrate, forming an orientation film on the transparent electrode, and forming a dot-shaped spacer on the orientation film by spraying a material through an inkjet nozzle.
Abstract:
A reflective liquid crystal display device include an upper substrate, a lower substrate, a liquid crystal layer interposed between the upper and lower substrates, a common electrode beneath the upper substrate, a plurality of orthogonal gate lines and data lines disposed on the lower substrate, a plurality of thin film transistors located near a crossing region of the gate and data lines, each of the plurality of thin film transistors include source and drain electrodes, a light absorption layer formed on each of the plurality of thin film transistors, a cholesteric liquid crystal color filter formed on the light absorption layer, and a plurality of pixel electrodes formed on the cholesteric liquid crystal color filter layer.
Abstract:
A liquid crystal display includes a substrate, a gate line on the substrate, a gate insulating layer on the gate line, a data line on the gate insulating layer, a thin film transistor having a gate electrode, a source electrode, and a drain electrode, wherein the gate electrode is connected to the gate line and the source electrode is connected to the data line, a first passivation layer having a first contact hole exposing the drain electrode and covering the data line and the thin film transistor, the first passivation layer having a first resistance, an insulating layer having a second resistance lower than the first resistance and covering the data line and the thin film transistor, a second passivation layer having a second contact hole connected to the first contact hole and on the insulating layer and the first passivation layer, and a pixel electrode on the second passivation layer and contacting the drain electrode through the first and second contact holes.
Abstract:
A discharging apparatus for a liquid crystal display is provided for substantially reducing a residual image upon power-off. In the apparatus, a gate driver integrated circuit selectively applies first and second gate voltages to gate lines of the display. A discharge circuit is coupled to the gate driver integrated circuit and senses a power-off state of a power supply line. When a power-off state is sensed, a short-circuit if formed between the first gate voltage supply line and the second gate voltage supply line, thereby discharging voltages on the gate lines. Accordingly, a gate low voltage relative gate high (pixel turn-on) voltage is discharged upon power-off to define a discharge path via the gate line, thereby rapidly discharging electric charges charged in the liquid crystal display panel.
Abstract:
An electroluminescent device and a method for manufacturing the same are provided to achieve a highly luminous electroluminescent device that can be used as a backlight for an LCD monitor. The electroluminescent device includes a substrate, a lower electrode layer having a surface of a plurality of convex shapes formed on the substrate, an insulating layer, a light-emitting layer, and an upper electrode layer sequentially formed on the lower electrode layer, and a passivation layer formed on the upper electrode layer. The method for manufacturing an electroluminescent device includes forming a lower electrode layer having a surface of a plurality of convey shapes on a substrate, sequentially forming an insulating layer, a light-emitting layer, and an upper electrode layer over the lower electrode layer to have substantially corresponding surface shapes as the lower electrode layer, and forming a passivation layer on the upper electrode layer.