Abstract:
A refrigerant system operates in an environment defined by three distinct temperature levels, such as, for instance, the outdoor ambient temperature level, the indoor temperature level and the refrigeration temperature level. The refrigerant system is provided with an air-to-refrigerant heat exchanger located within the general indoor environment and connected to receive the flow of refrigerant from a heat rejection heat exchanger. The air-to-refrigerant heat exchanger gives off heat to the indoor air and in the process further cools the refrigerant flowing to an expansion device to thereby increase the cooling effect provided by an evaporator to the refrigeration area. Provisions are also made to partially or entirely bypass the air-to-refrigerant heat exchanger and/or the heat rejection heat exchanger, on a selective basis.
Abstract:
A refrigerant vapor compression system includes a compression device, a refrigerant heat rejection heat exchanger, an expansion device, and a refrigerant heat absorption heat exchanger disposed in a closed-loop refrigerant circuit in serial refrigerant flow relationship. A refrigerant storage device is connected by at least one refrigerant line in fluid communication with the refrigerant circuit and a flow control device interdisposed in that refrigerant line. Refrigerant may be selectively withdrawn from and returned to the high-pressure side of the refrigerant circuit; or withdrawn from and returned to the low-pressure side of the refrigerant circuit; or withdrawn from the high-pressure side of the refrigerant circuit and returned to the low-pressure side of the refrigerant circuit. The refrigerant may be withdrawn from and returned to the refrigerant circuit during operation or during an off-cycle.
Abstract:
A refrigerant system is provided with a reheat function selectively utilizing the heat rejected by the variable speed drive controller and electronics that are often employed in known refrigerant cycles. By placing at least one of these variable speed drives in the path of air being delivered to an environment to be conditioned, the air is reheated to a desired temperature, after it has been overcooled in the evaporator to provide a desired humidity level. In this manner, the variable speed drive is cooled, and the reheat function is provided, without the requirement of any additional flow structure.
Abstract:
A refrigerant system is provided that includes a cooling refrigerant circuit, a reheat refrigerant circuit, an evaporator fan, and a controller. The evaporator fan forces indoor air in a first direction and a second direction. The indoor air passes across the evaporator before the reheat coil, in the first direction, but passes across the reheat coil before the evaporator, in the second direction. The controller, when in a conventional cooling mode, controls the reheat refrigerant circuit so that the reheat refrigerant circuit is not in fluid communication with the cooling refrigerant circuit and controls the evaporator fan to force the indoor air in the first direction. Conversely, the controller, when in a defrost mode, controls the reheat refrigerant circuit so that the reheat refrigerant circuit is in fluid communication with the cooling refrigerant circuit and controls the evaporator fan to force the indoor air in the second direction.
Abstract:
A refrigerant vapor compression system has a primary refrigerant circuit including a compression device, a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger, and an economizer circuit including an economizer refrigerant line. A bypass flow control device controls refrigerant vapor flow through a bypass line extending between the economizer refrigerant line and a suction pressure portion of the primary refrigerant circuit. A flow control apparatus operatively associated with the economizer refrigerant line provides different flow resistance to refrigerant flow through the economizer refrigerant line in a first direction from an intermediate stage of the compression device to the suction portion of the primary refrigerant circuit and in a second direction from the economizer into an intermediate pressure stage of the compression device.
Abstract:
A comfort HVAC or refrigeration system includes a remote sensor for sensing an environmental condition within a climate-controlled space and having, an associated transmitter for sending, a wireless signal to a receiver of a controller such that the controller can then responsively modulate the operation of the components of the HVAC or refrigeration system to maintain a desired condition at a specific location or locations within the-climate-controUed'space. The desired condition can be, for instance, temperature, humidity and/or carbon dioxide level.
Abstract:
A refrigerant system is provided with a control for its expansion device. The control operates the expansion device to adjust the superheat of the refrigerant leaving an evaporator to have desired dehumidification for air being delivered into an environment to be conditioned.
Abstract:
A fuel cell is provided to furnish electrical power to an HVAC&R system, and the waste heat from the fuel cell is transferred to a secondary fluid directed to flow to the climate-controlled space of a building during periods of time in which heating is required. The heat rejected by the fuel cell may be a supplemental or primary source of heat as well used for precise temperature control within the climate-controlled space of the building. A channeling assembly is used to selectively direct the fuel cell heat either to and/or away from the climate-controlled space served by the HVAC&R system. Higher energy efficiencies of the HVAC&R equipment are achieved, and the “cold blow” phenomenon is reduced or eliminated.
Abstract:
A refrigerant system is provided with at least two sequential stages of compression. An intercooler is positioned intermediate the two stages. The refrigerant flowing through the intercooler is cooled by a secondary fluid such as ambient air. A vapor/liquid injection function is also provided for the refrigerant system. The intercooler function and the vapor/liquid injection function are selectively activated on demand depending on environmental conditions and thermal load in a conditioned space. This invention is particularly important for the CO2 refrigerant systems operating in the transcritical cycle.
Abstract:
A controlled surface having a direct contact with a flow of cold air circulating within a climate-controlled space is provided. A thermoelectric device is associated with the controlled surface and has a hot junction positioned upstream in the path of the air stream moving over the controlled surface and a cold junction positioned downstream in the path of the air stream. This arrangement provides defogging, defrosting or condensate evaporation for the controlled surface, while the temperature in the climate-controlled space is not appreciably altered, and at least some amount of moisture is removed from the air stream by the thermoelectric device.