Abstract:
Aspects of the present disclosure provide techniques that may be applied in systems to allow for communication over a control channel utilizing a relatively narrow band (e.g., six physical resource blocks) based search space. An exemplary method, performed by a user equipment, generally includes identifying, within a subframe, a first search space to monitor for a downlink control channel that occupies a first number of physical resource blocks (PRBs) that represents a narrowband size and monitoring at least the first search space for the downlink control channel transmitted in the subframe.
Abstract:
Aspects of the present disclosure provide techniques that may be applied in systems comprising machine type communication (MTC) user equipments (UEs). An exemplary method performed by a base station comprises using a first transport block size (TBS) table to communicate with a first type of user equipment (UE), using a second TBS table to communicate with a second type of UE, wherein the first type of UE supports a reduced peak data rate relative to the second type of UE, signaling information to the first type of UE for use in determining a TBS from the first TBS table, and communicating with the first type of UE, with one or more transmissions having a payload with a number of bits determined based on a TBS value from the first TBS table selected based, at least in part, on the signaled information.
Abstract:
In a first configuration, a UE may determine a PRACH power ramp-up Pramp-up for the PRACH with respect to a previously unsuccessful PRACH transmission (e.g., a previously unsuccessful PRACH transmission with a highest transmission power). In a second configuration, when the UE is in a power-limited scenario, the UE drops/refrains from transmitting the PRACH transmission if Pramp-up−Pscal
Abstract:
A wireless communication method includes allocating physical uplink control channel (PUCCH) data in first slot to a first orthogonal cover code (OCC). The method also includes allocating PUCCH data in a second slot of the same subframe to a different orthogonal cover code (OCC). Another method includes mapping PUCCH resources to physical resource blocks based on a user equipment (UE) specific signaling parameter (e.g., a resource index) and a number of symbols in a slot of a subframe.
Abstract:
Reported CSI may not reflect non-cancelable CRS interference received from an interfering cell, such as when the CSI is computed when CRS interference is not received. To address the issue, a user equipment (UE) may determine an interference cancelation/suppression efficiency (CSE) associated with canceling/suppressing interference from interfering cells. In addition, based on the determined CSE, a UE may compute CSI such that the CSI reflects the true cancelation efficiency of the UE with respect to interfering cell signals. When computing the CSI based on the determined CSE, the UE may report that the CSI is worse than it is to reflect the UE's true cancelation efficiency with respect to the interfering cell signals.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In an aspect, the apparatus may determine at least a first and second resource set configured for a control channel and may determine a common set of aggregation levels for the first and second resource sets. The apparatus may further determine first rate-matching parameters for the first resource set and second rate-matching parameters for the second resource set, and may process the control channel using the common set of aggregation levels and the first and second rate-matching parameters.
Abstract:
Aspects of the present disclosure relate to techniques for determining timing of uplink transmissions for UEs communicating with carrier aggregation involving both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers (CCs). A timing advance (TA) offset value for a user equipment (UE) to use for uplink transmissions is determined based, at least in part, on which of the CCs carries a physical uplink control channel (PUCCH).
Abstract:
To enable coexistence in unlicensed bands or other shared spectrum, operators that deploy cellular coverage in unlicensed bands can broadcast and receive over-the-air (OTA) signaling messages that carry coexistence information such that the operators can adjust one or more parameters used to provide the cellular coverage in the unlicensed bands and thereby enable inter-operator coexistence. For example, the operators may coordinate the particular OTA signaling configuration used to carry the coexistence information and thereby enable each operator to learn information that the other operator(s) are using and thereby reduce interference on time, frequency, and/or spatial resources that may be shared among the operators providing the cellular coverage in the unlicensed bands. Furthermore, a user equipment (UE) that receives and decodes the OTA signaling messages exchanged among the operators may adjust one or more measurement parameters and/or operating parameters according to the coexistence information carried in the OTA signaling messages.
Abstract:
Provided is a method of wireless communication which includes selecting a codebook from a plurality of codebooks in accordance with an antenna characteristic, and transmitting an indication of the selected codebook. Each of the plurality of codebooks is associated with one of a plurality of antenna characteristics. In some designs, channel state information is received from a user equipment. The channel state information may be used to determine downlink scheduling and/or precoding. In some designs, the channel state information may include feedback elements associated with different subband granularity. The feedback elements may also indicate a selection of a subset of precoder column vectors and/or a phase offset between two groups of transmit antennas.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus that may be applied for sending uplink control information (UCI) as bundled transmissions. According to aspects, a UE may determine a first bundling size for transmitting a PUSCH, determine a second bundling size for transmitting the UCI, and transmit the UCI and the PUSCH as bundled transmissions according to the first and second bundling sizes. The BS may receive the UCI and the PUSCH as bundled transmissions from the UE according to the determined first and second bundling sizes.