Abstract:
An antenna port for an extended Physical Downlink Control CHannel (ePDCCH) transmission is determined based on at least an identifier for a leading extended Control Channel Element (eCCE) within the ePDCCH and an identifier for a user equipment (UE) to receive the ePDCCH transmission, and based on whether the ePDCCH transmission is localized or distributed. The determined antenna port is a DeModulation Reference Signal (DMRS) port to which the UE is assigned. Symbols are mapped in sequence to resource elements (REs) and transmitted via the determined antenna port to the UE.
Abstract:
A communication method of a user equipment in a mobile communication system. The method includes receiving a control signal from a base station, the control signal comprising at least one of: a first information element or a second information element; determining, if a field of the first information element is set to a predetermined value and a channel state information (CSI) reporting mode determined based on the second information element is a redetermined mode, a codebook based on the CSI reporting mode; generating a CSI based on the determined codebook, the CSI comprising at least one of a rank indicator (RI), a first precoding matrix indicator (PMI), or a second PMI; and reporting the generated CSI to the base station.
Abstract:
Methods and apparatuses are provided for transmitting channel information, by a UE. Information for at least one first type CSI-RS and information for at least one second type CSI-RS are identified. First channel information is generated based on a first type CSI-RS and a second type CSI-RS, among the at least one first type CSI-RS and the at least one second type CSI-RS. The first channel information is reported by PUCCH-based periodic channel information feedback. If a PDCCH including an indicator is received, second channel information is generated based on the first type CSI-RS and the second type CSI-RS. The second channel information is reported through a PUSCH. The indicator triggers a channel information report associated with the first type CSI-RS and the second type CSI-RS, among the at least one first type CSI-RS and the at least one second type CSI-RS.
Abstract:
Methods and apparatuses are provided for transmitting channel information, by a User Equipment (UE). Information for at least one first type Channel Status Information Reference Signal (CSI-RS) and information for at least one second type CSI-RS from an eNB, are identified. First channel information is generated based on a first set of a first type CSI-RS and a second type CSI-RS. Second channel information is generated based on a second set of a first type CSI-RS and a second type CSI-RS. The first channel information is reported by Physical Uplink Control CHannel (PUCCH)-based periodic channel information feedback. The second channel information is reported by the PUCCH-based periodic channel information feedback.
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
Apparatuses and methods for indicating and performing interference measurements. A method for performing interference measurements includes identifying a CSI-IM configuration for the UE to perform interference measurement. The method includes determining whether the CSI-IM configuration includes a subset of a total number of frequency resources configured for CSI-IM in the wireless communication system. The method includes measuring interference based on the identified CSI-IM configuration. Additionally, the method includes sending feedback based on the measured interference. The method for performing interference measurements may also include determining whether to perform interference measurements based on all downlink subframes or only a portion of the downlink subframes. Additionally, the method may include performing interference measurement based on the subframe determination.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Provided are a method and user equipment for sending feedback information to a base station. The method includes receiving a Channel Status Indication Reference Signal (CSI-RS) from the base station; generating feedback information on a basis of the received CSI-RS; and transmitting the generated feedback information to the base station, wherein generating feedback information includes selecting a precoding matrix for each antenna port group of the base station and selecting an additional precoding matrix on a basis of a relationship between the antenna port groups of the base station.