Abstract:
An image processing apparatus and an image fine-tuning method are provided. The image processing apparatus includes a high-pass filter, a block comparator, an image data reconstructor, and a calculator. The high-pass filter receives a first image to generate a filtered image. The block comparator receives an input image and the first image to generate a block comparison result. The image data reconstructor receives the filtered image and the block comparison result to generate image reconstruction data. The calculator receives the input image and the image reconstruction data to generate an output image.
Abstract:
A display driving device and a method for driving a display are provided. The display driving device includes a host and a driving chip. The host transmits an image data and a synchronization signal. The driving chip receives the image data and the synchronization signal and drives a display panel to display frames. The driving chip includes a storage unit, a driving module, and a control circuit. The storage unit stores the image data. The driving module drives the display panel to display the frames according to the image data from the host and a timing generator frequency of the driving module. The control circuit detects a target frequency of the synchronization signal and the timing generator frequency of the driving module, compares the target frequency and the timing generator frequency, outputs an adjustment value according to the comparison result, and adjusts the timing generator frequency of driving module.
Abstract:
A color translation method and a color translation apparatus adapted to map a data point from a first color space to a second color space are provided. At least four color axes coordinating with a plurality of first reference points and a plurality of second reference points corresponding to the first reference points are used to divide the first color space and second color space into a plurality of first sub-spaces and a plurality of second sub-spaces. A target first sub-space where the data point is located is found, and then a corresponding target second sub-space is also found. According to a positional relationship between the data point and the first reference points which define the target first sub-space, an interpolation operation is applied to the second reference points which define the target second sub-space so as to obtain a mapped point in the second color space.
Abstract:
A switching converter includes an input end, N output ends, an inductor, a charging/discharging control unit, an energy distribution control unit and a logic control unit. The input end is utilized for receiving an input voltage. The N output ends are utilized for outputting N output voltages. The inductor is utilized for storing energy of the input voltage. The charging/discharging control unit and the energy distribution control unit are respectively utilized for generating a charging/discharging control signal and N energy distribution control signals to control a charging switch and N output switches according to the N output voltages, wherein the i-th distribution control signal is corresponding to the i-th output voltage signal to the N-th output voltage signal. The logic control unit is utilized for generating the charging switch control signal and N output switch control signals according to the charging/discharging control signal and the N energy distribution control signals.
Abstract:
A source driver utilized for a display device and switching between two operational modes includes a reception module for receiving a plurality of display information and a plurality of transmission channels. Each transmission channel includes a register module for receiving one of the plurality of display information; a voltage level transformer for determining a voltage level of the one of display information; a polarization digital-to-analog converter for processing a digital-to-analog operation for the voltage level of the one display information; and an output module for outputting a plurality of voltage levels of the display information. The voltage levels of every two adjacent transmission channels include different polarization of voltage levels, and the output module processes an odd-number switching operation before outputting the plurality of voltage levels.
Abstract:
A method for correcting a rolling shutter effect is provided. The method includes: obtaining feature point pairs in images, wherein each of the feature point pairs corresponds to a motion vector; obtaining sampling points between two consecutive images in time; setting a moving velocity and an angular velocity of an image capturing unit at each of the sampling points as variables; obtaining estimating motion vectors according to the variables, a focal length of the image capturing unit, and row locations where the feature point pairs are located; executing an optimization algorithm according to a difference between the motion vectors and the estimating motion vectors, to calculate the moving velocity and the angular velocity corresponding to the variables; varying locations of pixels in an image according to the moving velocity and the angular velocity, to generate a first corrected image. Thereby, the rolling shutter effect in an image is removed.
Abstract:
A focusing method for an image capturing device includes detecting a plurality of focus frames of a plurality of characteristic points in a capturing area; acquiring a plurality of focuses according to the plurality of focus frames; and capturing a plurality of images according to each of the plurality of focuses.
Abstract:
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Abstract:
An analog to digital conversion method includes charging a capacitor through an analog signal to sample a voltage of the analog signal; coupling the capacitor and a plurality of reference voltages to a comparator when a voltage of the capacitor is equal to the voltage of the analog signal, to compare the voltage of the capacitor with the reference voltages and generate a first comparison result; coupling the capacitor to a ramp generator when a status of the first comparison result changes, to compare a ramp signal of the ramp generator with a voltage difference of a first reference voltage and the voltage of the capacitor and generate a second comparison result; obtaining a voltage of the ramp signal when a status of the second comparison result changes; and obtaining a digital code of the analog signal according to the first reference voltage and the voltage of the ramp signal.
Abstract:
A layout method applied to a connector is provided. The connector is electrically connected between a flexible printed circuit (FPC) and a printed circuit board (PCB). The FPC includes M pairs of differential lines and X shield lines. The PCB includes M pairs of differential lines and Z shield lines. The layout method includes following steps. Firstly, M pairs of conductive lines are disposed on the connector. The M conductive lines are correspondingly electrically connected to the M differential lines of the FPC and the M differential lines of the PCB. Then; Y conductive lines are disposed on the connector, wherein Y is smaller than X. Furthermore, at least one of the Y conductive lines is electrically connected to at least one of the X shield lines and at least one of the Z shield lines.