Abstract:
A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-
Abstract:
Disclosed is a novel process for producing an NaZn13 magnetic alloy which enables to obtain a magnetic alloy having higher characteristics than ever before. Specifically disclosed is a magnetic alloy represented by the following composition formula: (La1-xRx)a(A1-yTMy)bHcNd (wherein R represents at least one or more elements selected from rare earth elements including Y; A represents Si, or Si and at least one or more elements selected from the group consisting of Al, Ga, Ge and Sn; TM represents Fe, or Fe and at least one or more elements selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and x, y, a, b, c and d respectively satisfy, in atomic percent, the following relations: 0≦x≦0.2, 0.75≦y≦0.92, 5.5≦a≦7.5, 73≦b≦85, 1.7≦c≦14 and 0.07≦d
Abstract translation:公开了一种制造能够获得具有比以往更高特性的磁性合金的NaZn13磁性合金的新方法。 具体公开的是由以下组成式表示的磁性合金:(La1-xRx)a(A1-yTMy)bHcNd(其中R表示选自包括Y的稀土元素中的至少一种或多种元素; A表示Si或Si, 选自Al,Ga,Ge和Sn的至少一种或多种元素; TM表示Fe或Fe,以及选自Sc,Ti,V,Cr,Mn,Co中的至少一种或多种元素 ,Ni,Cu和Zn; x,y,a,b,c和d分别以原子百分比满足以下关系:0 <= x <= 0.2,0.75 <= y <= 0.92,5.5 <= a <= 7.5,73 <= b <= 85,1.7 <= c <14和0.07 <= d <5.0;包含不可避免的杂质)。
Abstract:
The present invention relates to the a method for manufacturing high strength ultra-fine/nano-structured aluminum/aluminum nitride or aluminum alloy/aluminum nitride composites using mechanical milling or mechanical alloying process which is conducted in the nitride-forming atmosphere such as nitrogen gas (N), ammonia gas (NH) or mixed gas including both gases, subsequent heat treatment process, and hot consolidation process. Also, high strength ultra-fine/nano-structured Al/ALN or Al alloy/ALN composite materials fabricated by the method of present invention have superior mechanical strength and heat resistance to those fabricated by conventional powder metallurgy process or liquid processes.
Abstract:
A soft magnetic material includes a plurality of composite magnetic particles (30) having metallic magnetic particles (10) that are composed of pure iron, and an insulation film (20) that surrounds the surface of the metallic magnetic particles (10), wherein the manganese content of the metallic magnetic particles (10) is 0.013 mass % or less, and is more preferably 0.008 mass % or less. Hysteresis loss can thereby be effectively reduced.
Abstract:
The present invention provides metal powder compositions for pressed powder metallurgy and methods of forming metal parts using the metal powder compositions. In each embodiment of the invention, the outer surface of primary metal particles in the metal powder composition is chemically cleaned to remove oxides in situ, which provides ideal conditions for achieving near full density metal parts when the metal powder compositions are sintered.
Abstract:
Methods for sintering aluminum powder comprise providing aluminum powder and heating the aluminum powder in a nitrogen atmosphere containing a partial pressure of water vapor in the range of about 0.001 kPa to about 0.020 kPa to sinter the aluminum powder to a transverse rupture strength of at least about 13.8 MPa. The aluminum powder is not pressed together by a mechanical force that substantially deforms particles of said aluminum powder either prior to or during the step of heating. Articles comprising sintered aluminum powder. The sintered aluminum powder has a transverse rupture strength of at least about 13.8 MPa. The microstructure of the sintered aluminum powder contains no compositional concentration gradients indicative of the use of a sintering aid and no evidence of particle deformation having occurred by an application of a mechanical force prior to or during the sintering of the aluminum powder.
Abstract:
A cermet insert having a structure composed of a hard phase and a binding phase and, as a sintered body composition, containing Ti, Nb and/or Ta, and W in a total amount of Ti in terms of carbonitride, Nb and/or Ta in terms of carbide and W in terms of carbide of 70 to 95 wt. % of an entirety of the microstructure, and containing W in terms of carbide in an amount of 15 to 35 wt. % of the entirety of the microstructure, the sintered body composition further containing Co and/or Ni. The hard phase has one or two or more of the phases: (1) a first hard phase of a core-having structure whose core portion contains a titanium carbonitride phase and a peripheral portion containing a (Ti, W, Ta/Nb)CN phase, (2) a second hard phase of a core-having structure whose core portion and peripheral portion both contain a (Ti, W, Ta/Nb)CN phase, and (3) a third hard phase of single-phase structure including a titanium cabonitride phase. Moreover, the titanium carbonitride phase includes a W-rich phase unevenly distributed in the titanium carbonitride phase.
Abstract:
A R—Fe—B base rare earth permanent magnet material consists of, in percents by weight, 25 to 45 wt % of R, 0.1 to 4.5 wt % of Co, 0.8 to 1.4 wt % of B, 0.05 to 3.0 wt % of Al, 0.02 to 0.5 wt % of Cu, 0.03 to 0.5 wt % of M, 0.01 to 0.5 wt % of C, 0.05 to 3.0 wt % of O, 0.002 to 0.1 wt % of N, 0.001 to 2.0 wt % of F, with the balance of Fe and incidental impurities, wherein R is at least one element selected from among Nd, Pr, Dy, Tb and Ho, and M is at least one element selected from among Zr, Hf, Ti, Cr, Nb, Mo, Si, Sn, Zn, V, W and Cr.
Abstract:
An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal. A porous sintered body comprising the nitrogen-containing metallic powder and a solid electrolytic capacitor comprising the powder have low leakage current and exhibit excellent reliability for a prolonged period of time.
Abstract:
A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.