Abstract:
A lithographic printing process which comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and a removable image-forming layer containing an infrared absorbing agent having the absorption maximum within an infrared region and a visible dye having the absorption maximum within a visible region to shift the absorption maximum of the visible dye within the exposed area with a change of at least 50 nm in the wavelength and a change of at least 15 in color in terms of ΔE, and to make the image-forming layer irremovable within the exposed area; removing the image-forming layer within the unexposed area of the lithographic plate mounted on a cylinder of a printing press; and then printing an image with the lithographic plate mounted on the cylinder of the printing press. The other processes are also disclosed.
Abstract:
A lithographic printing plate precursor comprises: an aluminum support that has been subjected to an alkali metal silicate treatment; and an image-recording layer comprising (A) an infrared absorbent, (B) a polymerization initiator and (C) a polymerizable compound, the image-recording layer being removable with at least one of a printing ink and a fountain solution, wherein the aluminum support has a surface where the amount of the Si element attached to the surface in the alkali metal silicate treatment is 1 mg/m2 to less than 10 mg/m2.
Abstract translation:平版印刷版原版包括:已经进行碱金属硅酸盐处理的铝载体; 以及图像记录层,其包含(A)红外线吸收剂,(B)聚合引发剂和(C)可聚合化合物,所述图像记录层可用至少一种印刷油墨和润版液除去,其中 铝载体具有在碱金属硅酸盐处理中附着于表面的Si元素的量为1mg / m 2至小于10mg / m 2的表面。
Abstract:
A planographic printing plate precursor includes a support having disposed thereon a recording layer containing a water-insoluble and alkali-soluble resin, a development inhibitor and an infrared absorber and exhibiting enhanced solubility in an aqueous alkali solution through light exposure. The recording layer may have either a mono-layer construction or a multi-layer construction containing a lower layer and an upper layer. In the case of the multi-layer construction, a layer containing the water-insoluble and alkali-soluble resin is used as the lower layer, and a layer containing the water-insoluble and alkali-soluble resin and the development inhibitor and exhibiting enhanced solubility in an aqueous alkali solution through light exposure is used as the upper layer, and at least one of the lower layer and the upper layer contains the infrared absorber.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I). The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer. General Formula (I)ZnullMnullwherein Z31 represents COCOOnull, COOnull, SO3null or SO2nullNnullnullR where R represents a monovalent organic group and M30 represents an onium cation.
Abstract:
A thermal negative type presensitized plate provided with an image recording layer hardened by infrared rays on an aluminum support, wherein the aluminum support has on the surface thereof, a grain shape with a structure in which a grained structure with medium undulation with a specified aperture diameter and a grained structure with small undulation with a specified aperture diameter are superimposed. For the presensitized plate, contact characteristics between the image recording layer and the support and scum resistance on a non-image area are kept compatible with each other at a high level, a thermal diffusion depression effect by which an energy generated by exposure can be efficiently used to form an image is excellent, and sensitivity is high.
Abstract:
Disclosed are a printing plate precursor, a fabrication process of the printing plate precursor, a fabrication process of a printing plate, a regeneration process of the printing plate, a printing press, and a coating formulation for the printing plate precursor. According to the present invention, a printing plate can be fabricated directly from digital data, and sufficient image quality can be obtained without a developing step, i.e., a developer. To permit repeated use of the precursor, the precursor has a surface, which contains a photocatalyst and is capable of showing hydrophilicity when exposed to activating light having energy higher than band gap energy of the photocatalyst. A coating formulationnullwhich comprises fine particles of a thermoplastic resin having both a property that the particles unite to the surface when heated and a property that the particles decompose under action of the photocatalyst when exposed to activating light having energy higher than band gap energy of the photocatalystnullis applied as a hydrophobizing agent onto the surface. At least a part of the surface of the precursor is heated such that the fine particles applied on the part of the surface are fixed to form a hydrophobic image area. The fine particles applied on the remaining part of the surface with the image area formed thereon are then removed.
Abstract:
A lithographic printing plate precursor comprising a support having a hydrophilic surface having provided thereon an image-forming layer containing a hydrophobic high molecular compound having at least either a functional group represented by formula (1) or a functional group represented by formula (2): 1 wherein Xnull represents an iodonium ion, a sulfonium ion or a diazonium ion.
Abstract:
A photosensitive lithographic printing plate in which press life, deletion performance, photosensitive layer removability and image reproducibility are compatible with one another, while retaining scumming prevention performance, which comprises an aluminum support hydrophilized after anodic oxidization, an intermediate layer provided thereon containing an alkali-soluble polymer adjusted in a number-average molecular weight (Mn) to the range of 300 to 5,000 by using an initiator in combination with a chain transfer agent in radical polymerization, and a photosensitive layer provided on the intermediate layer.
Abstract:
A positive working photosensitive lithographic printing plate comprising an aluminum substrate and a positive working photosensitive layer, the aluminum substrate having been anodized and rendered water-wettable, wherein an intermediate layer containing a polymer comprising (A) a unit interacting with an alumina layer and (B) a unit interacting with a water-wettable layer is provided between the aluminum substrate and the photosensitive layer. The photosensitive layer and the water-wettable aluminum substrate have good adhesion so that the printing plate has a satisfactory press life.