Abstract:
Methods, systems, and apparatuses are described for a base station initiated control mechanism for supporting supplemental a link. In some aspects, control information associated with a directional, first radio access technology (RAT) for a user equipment (UE) may be identified at a first base station, the first base station configured to communicate with the UE using the directional, first RAT, and the control information associated with the directional, first RAT may be transmitted to a second base station to forward to the UE using a second RAT.
Abstract:
A method, a computer program product, and an apparatus are provided. In one configuration, the apparatus transmits a first broadcast signal including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus transmits a second broadcast signal in the unicast resource. In another configuration, the apparatus, which is a first wireless device, receives a first broadcast signal from a second wireless device including information indicating an intention to use a unicast resource for a broadcast. In addition, the apparatus receives a first scheduling signal from the second wireless device in a scheduling resource. The first scheduling signal is for indicating a second intention to use the unicast resource for transmitting a second broadcast signal. Furthermore, the apparatus refrains from transmitting a second scheduling signal in the scheduling resource in response to the first scheduling signal.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a subframe that includes physical broadcast channel (PBCH) signals interspersed within beam reference signals, where the subframe may be a synchronization subframe including one or more synchronization signals. In some cases, the beam reference signals from different antenna ports may be code division multiplexed or frequency division multiplexed over multiple frequency tones. A user equipment (UE) may use the beam reference signals to generate channel estimates for the PBCH signals. In some cases, orthogonal cover codes for code division multiplexed signals may be selected to facilitate generation of channel estimates for PBCH signals transmitted using nearby frequency tones.
Abstract:
A method, an apparatus, and a computer program product for operating a user equipment (UE) are provided. The apparatus determines a first coarse set of beamforming paths between the UE and a first millimeter wave base station (mmW-BS), receives on a first set of narrow beamforming paths close to a first beamforming path within the first coarse set of beamforming paths, requests the first mmW-BS to transmit on a second set of narrow beamforming paths close to a second beamforming path within the first coarse set of beamforming paths when a signal quality of the first beamforming path and the first set of narrow beamforming paths are less than a first threshold, and communicates through one of the second beamforming path or a path within the second set of narrow beamforming paths.
Abstract:
A base station (anchor node) determines that a channel quality for a UE is less than a threshold quality, and commands one or more base stations to adjust a periodicity of performing a beam sweep with the UE based on whether said channel quality is determined to be less than the threshold quality. A base station (mmW base station) adjusts a periodicity for performing a beam sweep with a UE based on a channel quality associated with the UE, and performs the beam sweep at the adjusted periodicity. The beam sweep is a plurality of transmissions of a beam in a plurality of different transmit spatial directions by one of the base station or the UE and a plurality of scans of the beam in a plurality of different scan spatial directions by an other of the one of the base station or the UE.
Abstract:
A method, an apparatus, and a computer program product for operating a user equipment (UE) are provided. The apparatus receives beamforming capability information indicating one of at least a digital, analog, or hybrid beamforming capability, the beamforming capability associated with a millimeter wave base station (mmW-BS). Based on the beamforming capability information, the apparatus scans N transmit beams from the mmW-BS for each of M receive beam directions of the UE, determines one or more preferred scanned beams from among the N transmit beams, and establishes a wireless communication link with the mmW-BS based on the preferred one or more scanned beams.
Abstract:
A link based on one radio access technology (RAT) is used to supplement the operation of another RAT. For example, in a user equipment (UE) device that can access both long term evolution (LTE) and millimeter wave (mmW) networks, the UE may use an LTE network to relay information between the UE and the mmW network.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus listens for directional signal beams according to a first pattern, detects a plurality of discovery signals respectively from a plurality of connection points (CPs), wherein each CP transmits a discovery signal by transmitting a directional beam according to a respective pattern, determines information related to each CP based on the discovery signal detected from a respective CP, determines a timeslot for transmitting an association signal to each CP, wherein a respective timeslot is determined based on the information determined for the respective CP or a timeslot in which the respective discovery signal is transmitted by the respective CP according to the respective pattern, and transmits an association signal to each CP in the respective timeslot according to a determined beamforming direction of the UE and a determined beamforming direction of the respective CP.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a serving base station. The serving base station receives channel feedback from a plurality of UEs. The channel feedback is based on predetermined phase rotations used by the serving base station. The serving base station selects at least one UE of the UEs for a data transmission based on the received channel feedback. The serving base station maps at least one data stream to a set of resource blocks. The serving base station transmits the set of resource blocks to the at least one UE with a phase rotation determined based on the predetermined phase rotations.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines a first set of channels for communicating with another apparatus. Each channel in the first set is determined by performing beam training with the other apparatus. The apparatus further determines a second set of channels from the first set, wherein the channels of the second set have a channel condition greater than a threshold. The apparatus communicates data via the second set, wherein a channel of the second set on which the data is communicated is based on the channel condition of at least one channel of the second set.