Abstract:
An electron beam emitting apparatus has a first plate with an electron-emitting device 15, and an electrode 8 opposed to the first plate, and the electrode 8 is applied a potential to accelerate electrons emitted from the electron-emitting device 15. In the electron beam emitting apparatus, a potential defining region 9 is provided a surface of the first plate on the electrode 8 side and a first potential defining region forming the potential defining region 9 is provided in a projective area of the electrode 8 onto the potential defining region 9; and, where d represents a distance between the electrode 8 and the potential defining region 9, an additional potential defining region is defined in the range of 0.83d in all directions parallel to the first plate from the edge of the projective area of the electrode 8 onto the potential defining region 9. This stabilizes trajectories of electrons and permits an excellent image to be formed without deviation of light emission positions.
Abstract:
A method of manufacturing an image forming apparatus having an envelope made of members inclusive of a first substrate and a second substrate disposed at a space being set therebetween, image forming means and spacers disposed in the envelope, the spacers maintaining the space, the method comprising the steps of forming a spacer having a desired shape by cutting a spacer base member, and abutting the spacer upon the first and second substrates at non-cut surfaces of the spacer.
Abstract:
A method of manufacturing a cold cathode type electron emitting device includes forming a pair of electrodes, which are spaced from each other, on a substrate, forming conductive thin films, which are electrically connected with the pair of electrodes and have a cracked portion therebetween, on a space between the pair of electrodes, forming conductive deposits on the cracked portion of the conductive thin films to form an electron emission section, and subjecting the electron emission section to a treatment using plasma to expand a gap between the conductive deposits on the cracked portion.
Abstract:
A method for manufacturing electron emitting devices each having electrodes formed on a substrate and an electroconductive thin film connected between a pair of electrodes and having an electron emitting region is provided which can manufacture electron emitting devices having an excellent uniformity of electron emitting characteristics by improving the formation of liquid droplets to be dispensed to the substrate. In the manufacturing method, the substrate formed with the electrodes is subjected to a hydrophobic process using a silane coupling agent which contains two or more acetoxy groups in a molecule, and thereafter liquid droplets containing material for forming the electroconductive thin film are dispensed to the substrate. An image of excellent uniformity can be displayed by adopting electron emitting devices manufactured in the above manner to an image display apparatus.
Abstract:
To provide an antistatic film that requires low power consumption and provides satisfactory electric contact, as a measure for preventing an insulating substrate surface having an electronic device formed thereon from being charged. The electronic device includes: an insulating substrate; a conductor; and a resistance film connected with the conductor, the conductor and the resistance film being formed on the insulating substrate, characterized in that the resistance film has a larger thickness in a connection region with the conductor than a thickness in portions other than the connection region.
Abstract:
There are provided an electron emitter of which deviation in electron emission characteristic is small, a method of manufacturing the electron emitter, and an electro-optical device and an electronic apparatus having the electron emitter. The method of manufacturing an electron emitter, in which electrons are emitted from an electron emission portion formed in a conductive film, comprises forming the conductive film in a pattern on a substrate by the use of a droplet jetting method; selectively removing a part of the conductive film; and forming the electron emission portion in the conductive film.
Abstract:
A miss landing measure on a face plate of electrons emitted from electron-emitting devices by the warping of a rear plate and the face plate accompanying heat processes, such as seal bonding, is provided. Initial velocity vectors of electrons emitted from an electron-emitting area of an electron-emitting device formed on the rear plate has a distributed tendency according to an in-plain distribution of normal line directions of the rear plate so that the electrons emitted from each of the plurality of electron-emitting devices may irradiate each of the plurality of light emitting portions, corresponding to each of the electron-emitting devices, formed on the face plate.
Abstract:
An image forming apparatus in which a first substrate provided with an electron-emitting device and an image displaying member which electrons emitted from the electron-emitting device irradiate are arranged to be opposed is provided with a deflecting means deflecting the electrons emitted from the electron-emitting device and a trapping unit trapping an inert gas ionized by the electrons. Thereby, the damages of the electron-emitting device by the inert gas are prevented, and the life of an image display apparatus is aimed to be elongated.
Abstract:
This invention provides an arrangement for alleviating the electric charge of members apt to be electrically charged such as spacers used in an electron beam apparatus by arranging a high resistance film thereon. Particularly, the low resistance layer arranged at each of the members is covered by a high resistance film to suppress any electric discharges.
Abstract:
A covering layer for insulating between column wirings and device electrodes is formed in a region including each cross point of the column wirings and row wirings and under the column wirings. Thus, when an electron source plate in which a large number of electron-emitting devices are wired in passive matrix is formed, a defect resulting from an interaction between the device electrodes and the column wirings at the time of wiring formation is reduced to improve insulation reliability. Therefore, a high quality image is obtained by a large size and higher density pixel arrangement in an image-forming apparatus using the electron source plate.