Abstract:
Error detection section 109 carries out error detection using demodulated data and outputs an error rate to SIR versus error rate estimation section 110. SIR versus error rate estimation section 110 estimates an SIR versus error rate and outputs the result of decision as to whether the correction of the target SIR value is necessary or not to target SIR correction section 111. Target SIR correction section 111 corrects the target SIR value based on the decision result. The information on the demodulation capability of a BTS is output to G parameter control section 112 and G parameter control section 112 determines an optimal gain factor. A G parameter indicating the determined gain factor is output to multiplexing section 107 of the BTS. The G parameter is output to SIR versus error rate estimation section 110. This makes it possible to perform communications with an optimal gain factor and target SIR during diversity handover between base stations with and without an interference canceller or between base stations with interference cancellers of different capabilities.
Abstract:
A radio receiving apparatus and radio receiving method are provided that enable the overall apparatus circuit scale to be reduced, and small apparatus size and low apparatus cost to be achieved, without increasing the processing load, together with a mobile station apparatus and base station apparatus equipped with this radio receiving apparatus. A phase control section (290) holds a phase rotation amount of each subcarrier signal due to the delay in the sampling timing of the second antenna with respect to the first antenna, decided in advance according to the number of antennas of the radio receiving apparatus and the subcarrier frequencies. The phase control section (290) performs phase rotation by the held phase rotation amount of each of N subcarrier signals output from an FFT section (240-2) corresponding to the second antenna.
Abstract:
A communication apparatus and method may calculate the quality of a received packet, combine the received packet with another packet, perform error detection on the combined packet if the calculated quality exceeds a threshold, and transmit a retransmission request when the calculated quality does not exceed the threshold or an error is detected in the combined packet. Additionally, the apparatus and method may combine a first received packet with another packet to produce a first combined packet, combine a second received packet with the first combined packet to produce a second combined packet, calculate the respective qualities of the first and second combined packets, and perform error detection on the second combined packet if its calculated quality exceeds that of the first combined packet. A retransmission request is transmitted when the first calculated quality exceeds the second calculated quality or an error is detected in the second combined packet.
Abstract:
An allocation section 101 in a base station apparatus of the present invention sets the transmission rate of a transmit signal for a communication terminal apparatus based on a DRC signal transmitted from that communication terminal apparatus. A power margin information detector 117 detects power margin information from a demodulated signal generated by a demodulator 115, and, using that power margin information, a power setting section 118 makes a setting so as to give the minimum transmission power value at which received signal characteristics in each communication terminal apparatus meet the desired quality. Using the set transmission power value, the base station apparatus transmits a transmit signal of the set transmission rate to a communication terminal apparatus. By this means it is possible to suppress interference to a communication terminal apparatus that performs adaptive modulation communication with another base station apparatus and a communication terminal apparatus that performs adaptive modulation communication with the local base station apparatus at the same time.
Abstract:
A multicarrier communication method and a multicarrier communication apparatus used for the method for adjusting the arrangement in code block units according to the actual reception state of the multicarrier signal, when arranging code blocks generated through error correcting coding processing not only in the time axis direction but also in the frequency axis direction in order to improve an error correction rate of a multicarrier signal. The method according to the present invention includes a coding processing step of carrying out error correcting coding processing on a multicarrier signal, a transmission step of transmitting the multicarrier signal subjected to the error correcting coding processing, a reception step of receiving the multicarrier signal transmitted, an analysis step of analyzing a reception state based on the multicarrier signal received and an arrangement adjusting step of adjusting the arrangement of code blocks generated through the error correcting coding processing according to the analysis result in the analysis step.
Abstract:
A reception weight calculation section 203 calculates reception weights W1 and W2 every antenna using an optimal directional control method in order to improve interference cancellation effect, an arrival direction estimation section 204 estimates a direction of arrive of a received signal for each antenna to calculate steering vectors S1 and S2 for each antenna, and a replica weight calculation section 211 calculates replica weights Wr1 and Wr2 using the reception weights W1, W2 and steering vectors S1, S2.
Abstract:
A retransmission request signal creation section (119) outputs an ACK signal or NACK signal to a NACK signal counting section (120) based on the result of error detection by an error detection section (118), the NACK signal counting section (120) counts, for each communication mode, the number of NACK signals output (that is, the number of data retransmissions) before an ACK signal is output from the retransmission request signal creation section (119), and a table rewriting section (121) compares the number of retransmissions counted by the NACK signal counting section (120) with a predetermined threshold value for the number of retransmissions, and rewrites the contents of a communication mode table (102) based on the result of this comparison.
Abstract:
A mutlicarrier transmitting apparatus, a multicarrier receiving apparatus and a multicarrier radio communication method, which are capable of improving a throughput of a whole multicarrier radio communication system. Based on receiving SNR values of users 1 to 4 for all of the subcarriers 1 to 4 in a receiving SNR table made, the number of available users U(n) of each subcarrier is calculated. Subcarriers n* having the smallest number of the available users are searched, and a user k* showing the highest receiving SNR value among the researched subcarriers n* having the smallest number of the available users U(n) is searched. Subsequently, the subcarriers n* are allocated to the user k*.
Abstract:
In order to improve reception performance, while reducing the arithmetic amount of a receiver apparatus in a multi-carrier CDMA system, different weightings are performed for the respective spread codes (chips) included in subcarriers in addition to performing weightings for the respective subcarriers.
Abstract:
A GI insertion section 105 inserts a guard interval into transmission data. Delay addition sections 107-1, 107-2 set a delay time in the transmission data. An arrival time calculation section 115 calculates for each directivity an arrival time after data is transmitted from the other party of communication until the data is received from received data of each directivity. A delay time determining section 116 calculates a difference in the arrival time between transmission data transmitted with two directivities and sets the calculated arrival time difference in the transmission data to be transmitted with the directivity corresponding to the smaller arrival time as a delay time. A GI length determining section 117 sets a minimum arrival time of the calculated arrival times as a guard interval. This allows a transmission rate to be improved by shortening the length of a guard interval in a radio communication system to which a system of transmitting an OFDM signal with a directivity is applied.