Abstract:
A User Equipment (UE) receives and samples communication signals, where the communication signals have a time frame format, a transmission chip rate and a synchronization code associated with a time slot that includes a midamble that indicates a modulation of the synchronization code where a specified modulation of received synchronization codes identifies the timing for a timeslot in which data is to be received. The UE preferably includes a synchronization code determination circuit, a midamble determination circuit, and a phase modulation sequence detection circuit operatively associated with the midamble determination circuit. The UE can be configured for use with the low chip rate option of the Third Generation Partnership Project (3GPP) Universal Mobile Telecommunication System (UMTS) standards that employ a predefined set of downlink SYNC codes that point to midambles which indicate SYNC code modulation sequence to enables reading of data in a subsequent Broadcast Channel (BCH) message.
Abstract:
A code-tracking system includes a loop filter, which receives an early/late error signal and outputs a loop filter error signal. An error scaling device receives the loop filter error representing an update and provides a code tracking adjustment signal. A controller monitors a frequency of updates and/or a number of same direction updates and provides a filter coefficient in accordance with the frequency of updates and/or the number of same direction updates.
Abstract:
A Node-B/base station has an access burst detector. The access burst detector comprises at least one antenna for receiving signals from users and a pool of reconfigurable correlators. Each correlator correlates an inputted access burst code at an inputted code phase with an inputted antenna output. An antenna controller selectively couples any output of the at least one antenna to an input of any of the correlators. A code controller provides to an input of each correlator an access burst code. The code controller controls the inputted code phase of each controller. A sorter/post processor sorts output energy levels of the correlators.
Abstract:
A User Equipment (UE) receives and samples communication signals, where the communication signals have a time frame format, a transmission chip rate and a synchronization code associated with a time slot that includes a midamble that indicates a modulation of the synchronization code where a specified modulation of received synchronization codes identifies the timing for a timeslot in which data is to be received. The UE preferably includes a synchronization code determination circuit, a midamble determination circuit, and a phase modulation sequence detection circuit operatively associated with the midamble determination circuit. The UE can be configured for use with the low chip rate option of the Third Generation Partnership Project (3GPP) Universal Mobile Telecommunication System (UMTS) standards that employ a predefined set of downlink SYNC codes that point to midambles which indicate SYNC code modulation sequence to enables reading of data in a subsequent Broadcast Channel (BCH) message.
Abstract:
A method of processing digital samples of a signal received at a receiver of a wireless communication system includes monitoring channel conditions and generating a channel indicator including at least one channel parameter by performing at least one of: estimating a channel mobility parameter and comparing it with a threshold; estimating a channel parameter of the energy of the channel outside a predefined temporal window, and comparing it with a threshold; estimating a channel temporal duration parameter and establishing if it meets predetermined criteria; estimating a channel-zero location parameter and establishing if it meets predetermined criteria; estimating a received-signal signal-to-disturbance power ratio, and comparing it to a threshold; estimating an estimated-channel-response signal-to-disturbance power ratio; estimating the degree of non-stationarity of the disturbance at the receiver input; and selecting one of a plurality of processing routines for processing the digital samples based on said channel indicator. Related receivers are also described.
Abstract:
A receiver receives signals and noise over a frequency spectrum of a desired received signal. The desired received signal is spread using code division multiple access. The received signals and noise are demodulated to produce a demodulated signal. The demodulated signal is despread using a code uncorrelated with a code associated with the desired received signal. A power level of the despread demodulated signal is measured as an estimate of the noise level of the frequency spectrum.
Abstract:
Disclosed is a CDMA receiver including a delay profile generating unit for generating a plurality of delay profiles in time slots; path detecting units for detecting paths from the plurality of delay profiles; delay spread calculating units for calculating delay spreads based upon the detected paths; a finger-number-allocation calculating unit for calculating a number of fingers to be allocated based upon number of detected paths and delay spreads; and finger allocating units for allocating fingers to the detected paths from the number of fingers to be allocated as calculated by the finger-number-allocation calculating unit.
Abstract:
A base station (10) of a radio-operated telecommunications system is described, which is provided with a receiver for processing received information (11) and with at least one digital signal processor (12) for performing a symbol rate processing (14). The signal processor (12) is suitable for and provided for likewise performing at least parts of a chip rate processing (13).
Abstract:
A re-configurable correlation unit for correlating a sequence of chip samples comprising: 1) a memory for storing the chip samples; 2) a plurality of add-subtract cells, each add-subtract cell receiving a plurality of real bits, a, and a plurality of imaginary bits, b, from a first chip sample; and 3) a plurality of sign select units. Each sign select units receives from one add-subtract cells a first input equal to a sum (a+b) of the real bits, a, and the imaginary bits, b, and a second input equal to a difference (a−b) of the real bits, a, and the imaginary bits, b. Each sign select unit generates a real output and an imaginary output, wherein each of the real and imaginary outputs is equal to one of: 1) the sum (a+b) multiplied by one of +1 and −1 and 2) the difference (a−b) multiplied by one of +1 and −1.
Abstract:
A CDMA receiving apparatus 1 comprises: a path searcher 20 which takes a received data sequence as an input, and which outputs path timing that corresponds to sample timing where a correlation value indicative of correlation between the received data sequence and a reference code sequence reaches a peak, and outputs the correlation value calculated at a sample timing adjacent to the path timing as an adjacent timing correlation value; an interpolation adjuster 40; and a despreader 30 which despreads an output of the interpolation adjuster 40 at the path timing, wherein the interpolation adjuster 40 includes an interpolator 60 for generating an interpolated received data sequence displaced in time by a specified fraction of one sample period with respect to the received data sequence, and outputs the received data sequence or the interpolated received data sequence by switching therebetween based on a result of a comparison between the correlation value calculated at the path timing and the adjacent timing correlation value.